In [1]:
import numpy as np

import pandas as pd

# 导入我自定义的模块

import sys

sys.path.append("./code_libs")

import alpha_tools as at

Checking data_tools dependencies...

Checking numpy >= 1.20.3...

Find that numpy == 1.21.5...

Checking pandas >= 1.3.4...

Find that pandas == 1.3.5...

Checking bottleneck >= 1.3.4...

Find that bottleneck == 1.3.4...

Checking graphviz >= 0.20...

Find that graphviz == 0.20...

Checking scikit-learn >= 1.0.1...

Find that scikit-learn == 1.0.2...

Checking xlrd >= 2.0.1...

Find that xlrd == 2.0.1...

Checking psutil >= 5.8.0...

Find that psutil == 5.9.0...

Checking openpyxl >= 3.0.9...

Find that openpyxl == 3.0.9...

Checking xlsxwriter >= 3.0.3...

Find that xlsxwriter == 3.0.3...

Checking data_tools dependencies finished.

Checking tree_tools dependencies...

Checking numpy >= 1.20.3...

Find that numpy == 1.21.5...

Checking pandas >= 1.3.4...

Find that pandas == 1.3.5...

Checking bottleneck >= 1.3.4...

Find that bottleneck == 1.3.4...

Checking graphviz >= 0.20...

Find that graphviz == 0.20...

Checking scikit-learn >= 1.0.1...

Find that scikit-learn == 1.0.2...

Checking xlrd >= 2.0.1...

Find that xlrd == 2.0.1...

Checking psutil >= 5.8.0...

Find that psutil == 5.9.0...

Checking openpyxl >= 3.0.9...

Find that openpyxl == 3.0.9...

Checking xlsxwriter >= 3.0.3...

Find that xlsxwriter == 3.0.3...

Checking scipy >= 1.7.1...

Find that scipy == 1.7.3...

Checking imbalanced-learn >= 0.9.0...

Find that imbalanced-learn == 0.9.0...

Checking matplotlib >= 3.4.2...

Find that matplotlib == 3.5.1...

Checking statsmodels >= 0.13.1...

Find that statsmodels == 0.13.1...

Checking scikit-optimize >= 0.9.0...

Find that scikit-optimize == 0.9.0...

Checking hyperopt >= 0.2.7...

Find that hyperopt == 0.2.7...

Checking lxml >= 4.6.3...

Find that lxml == 4.7.1...

Checking sklearn2pmml >= 0.83.0...

Find that sklearn2pmml == 0.83.0...

Checking sklearn_pandas >= 2.2.0...

Find that sklearn_pandas == 2.2.0...

Checking xgboost >= 1.6.1...

Find that xgboost == 1.6.1...

Checking lightgbm >= 3.3.2...

Find that lightgbm == 3.3.2...

Checking catboost >= 1.0.4...

Find that catboost == 1.0.4...

Checking pikepdf >= 5.1.3...

Find that pikepdf == 5.1.3...

Checking reportlab >= 3.5.68...

Find that reportlab == 3.6.5...

Checking svglib >= 1.3.0...

Find that svglib == 1.3.0...

Checking tree_tools dependencies finished.

Checking model_tools dependencies...

Checking numpy >= 1.20.3...

Find that numpy == 1.21.5...

Checking pandas >= 1.3.4...

Find that pandas == 1.3.5...

Checking bottleneck >= 1.3.4...

Find that bottleneck == 1.3.4...

Checking graphviz >= 0.20...

Find that graphviz == 0.20...

Checking scikit-learn >= 1.0.1...

Find that scikit-learn == 1.0.2...

Checking xlrd >= 2.0.1...

Find that xlrd == 2.0.1...

Checking psutil >= 5.8.0...

Find that psutil == 5.9.0...

Checking openpyxl >= 3.0.9...

Find that openpyxl == 3.0.9...

Checking xlsxwriter >= 3.0.3...

Find that xlsxwriter == 3.0.3...

Checking scipy >= 1.7.1...

Find that scipy == 1.7.3...

Checking imbalanced-learn >= 0.9.0...

Find that imbalanced-learn == 0.9.0...

Checking matplotlib >= 3.4.2...

Find that matplotlib == 3.5.1...

Checking statsmodels >= 0.13.1...

Find that statsmodels == 0.13.1...

Checking scikit-optimize >= 0.9.0...

Find that scikit-optimize == 0.9.0...

Checking hyperopt >= 0.2.7...

Find that hyperopt == 0.2.7...

Checking lxml >= 4.6.3...

Find that lxml == 4.7.1...

Checking sklearn2pmml >= 0.83.0...

Find that sklearn2pmml == 0.83.0...

Checking sklearn_pandas >= 2.2.0...

Find that sklearn_pandas == 2.2.0...

Checking model_tools dependencies finished.

In [2]:
# 导入数据

df_ = pd.read_csv("application_record.csv")

df_response = pd.read_csv("credit_record.csv")

In [3]:
# 添加“年龄”变量

df_['Age'] = -(df_['DAYS_BIRTH']) // 365

# 定义标签

df_["target"] = df_["ID"].map(df_response.groupby("ID")["STATUS"].apply(

lambda x: 1 if ({"2", "3", "4", "5"} & set(x)) else 2 if ({"1"} & set(x)) else 0))

# 定义切片

df_['birth_year'] = df_["Age"].map(lambda x: str(2021 - x) + "0101")

df_data = df_[df_["target"].notnull()]

# 划分数据集

from sklearn.model_selection import train_test_split

df_train, df_test = train_test_split(

	df_data, test_size=0.3, stratify=df_data["target"], random_state=42)

In [4]:
# 首先定义一下之前data_flow用过的参数,便于后续直接调用

data_params = {

    "response": "target",  # 基础定义

    "split_col_name": "birth_year", "use_train_time": True,  # 时间切片

    "add_info": "ID",  # 主键添加

    "enable_single_threshold": False,  # 关闭单一值过滤

    # enable_iv_limit=True, iv_threshold=[0.01, np.inf],  # 暂不启用iv过滤

    "customized_groups": {

        "OCCUPATION_TYPE": [

            "Cleaning staff|Cooking staff|Drivers|Laborers|Low-skill Laborers|Security staff|Waiters/barmen staff",

            "Accountants|Core staff|HR staff|Medicine staff|Private service staff|Realty agents|Sales staff|Secretaries",

            "Managers|High skill tech staff|IT staff",

        ],

        "CNT_CHILDREN": [-np.inf, 0, np.inf],

    },

    "exclude_column": ["ID", "weight"],  # 排除权重

    "min_group_percent": 0,

}

In [5]:
at.Analysis.model_on_data(

    df_train, "./模型分析demo/v12/v12.xlsx", test_data=df_test,

    data_flow={

        **data_params,

        **{

            "save_or_return": False  # 跳过csv的io读写提升性能

        },

    },

    model_flow={

        # 默认流程即为评分卡建模,采用statsmodels的逻辑回归

        "model_type_path": "statsmodels.api.Logit"

    }

)

INFO Prepare kwargs...

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting format_time_edge to True !

INFO Prepare run...

INFO Run: DAYS_BIRTH

INFO Run: NAME_HOUSING_TYPE

INFO Run: FLAG_OWN_REALTY

INFO Run: NAME_EDUCATION_TYPE

INFO Run: CNT_FAM_MEMBERS

INFO Run: FLAG_WORK_PHONE

INFO Run: Age

INFO Run: CODE_GENDER

INFO Run: FLAG_PHONE

INFO Run: NAME_FAMILY_STATUS

INFO Run: FLAG_MOBIL

INFO Run: CNT_CHILDREN

INFO Run: NAME_INCOME_TYPE

INFO Run: OCCUPATION_TYPE

INFO Run: FLAG_EMAIL

INFO Run: DAYS_EMPLOYED

INFO Run: FLAG_OWN_CAR

INFO Run: AMT_INCOME_TOTAL

INFO Selecting...

INFO Match train: FLAG_WORK_PHONE_asC

INFO Match train: FLAG_OWN_REALTY_asD

INFO Match train: CODE_GENDER_asD

INFO Match train: Age_asC

INFO Match train: NAME_EDUCATION_TYPE_asD

INFO Match train: NAME_HOUSING_TYPE_asD

INFO Match train: DAYS_BIRTH_asC

INFO Match train: CNT_FAM_MEMBERS_asC

INFO Match train: NAME_FAMILY_STATUS_asD

INFO Match train: CNT_CHILDREN_asC

INFO Match train: FLAG_PHONE_asC

INFO Match train: OCCUPATION_TYPE_asD

INFO Match train: FLAG_EMAIL_asC

INFO Match train: FLAG_OWN_CAR_asD

INFO Match train: NAME_INCOME_TYPE_asD

INFO Match train: DAYS_EMPLOYED_asC

INFO Match train: AMT_INCOME_TOTAL_asC

INFO Creating train data...

INFO Creating train corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating train cross table...

INFO Creating train all desc tables...

INFO Match test: DAYS_BIRTH_asC

INFO Match test: NAME_HOUSING_TYPE_asD

INFO Match test: FLAG_OWN_REALTY_asD

INFO Match test: FLAG_WORK_PHONE_asC

INFO Match test: NAME_EDUCATION_TYPE_asD

INFO Match test: CNT_FAM_MEMBERS_asC

INFO Match test: CODE_GENDER_asD

INFO Match test: Age_asC

INFO Match test: FLAG_PHONE_asC

INFO Match test: NAME_FAMILY_STATUS_asD

INFO Match test: NAME_INCOME_TYPE_asD

INFO Match test: CNT_CHILDREN_asC

INFO Match test: OCCUPATION_TYPE_asD

INFO Match test: DAYS_EMPLOYED_asC

INFO Match test: FLAG_EMAIL_asC

INFO Match test: FLAG_OWN_CAR_asD

INFO Match test: AMT_INCOME_TOTAL_asC

INFO Creating test data...

INFO Creating test corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating test cross table...

INFO Creating test all desc tables...

INFO Match train test: FLAG_OWN_REALTY_asD

INFO Match train test: NAME_FAMILY_STATUS_asD

INFO Match train test: DAYS_EMPLOYED_asC

INFO Match train test: NAME_INCOME_TYPE_asD

INFO Match train test: NAME_HOUSING_TYPE_asD

INFO Match train test: NAME_EDUCATION_TYPE_asD

INFO Match train test: CODE_GENDER_asD

INFO Match train test: OCCUPATION_TYPE_asD

INFO Match train test: AMT_INCOME_TOTAL_asC

INFO Match train test: FLAG_WORK_PHONE_asC

INFO Match train test: FLAG_OWN_CAR_asD

INFO Match train test: FLAG_PHONE_asC

INFO Match train test: DAYS_BIRTH_asC

INFO Match train test: CNT_CHILDREN_asC

INFO Match train test: FLAG_EMAIL_asC

INFO Match train test: Age_asC

INFO Match train test: CNT_FAM_MEMBERS_asC

INFO Saving info...

INFO Saving desc...

INFO Saving cross...

INFO Saving unique...

INFO Saving summary...

INFO Saving corr summary...

INFO Saving stable_summary...

INFO Saving train_stable_iv_ks...

INFO Saving train_stable_psi...

INFO Saving train_stable_quantile...

INFO Saving test_stable_iv_ks...

INFO Saving test_stable_psi...

INFO Saving test_stable_quantile...

INFO Saving stable_cross_psi...

INFO Saving detail...

INFO Saving draft...

INFO Saving drop...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 25.07 s

INFO Prepare kwargs...

WARNING Using response as split_col_name !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Find that nan_mode is None, setting nan_mode to default_null_mode !

WARNING Find that convert_score is True, setting precision to 0 !

INFO Model linear flow...

WARNING Find that convert_score is True & save_score_pmml is True, setting save_model_pmml to False !

INFO Selecting by corr...

INFO Total: 17...

INFO Selected: 15...

WARNING Found n_jobs not set, setting to 2 !

WARNING Auto setting lightgbm params...

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 15...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 15...

INFO Selected: 15...

INFO Round: 1; Forward Stepwise: WOE_FLAG_OWN_REALTY_asD; Selected: 2

INFO Round: 1; Forward Stepwise: WOE_NAME_FAMILY_STATUS_asD; Selected: 3

INFO Round: 1; Forward Stepwise: WOE_DAYS_EMPLOYED_asC; Selected: 4

INFO Round: 1; Forward Stepwise: WOE_NAME_INCOME_TYPE_asD; Selected: 4

INFO Round: 1; Forward Stepwise: WOE_NAME_HOUSING_TYPE_asD; Selected: 5

INFO Round: 1; Forward Stepwise: WOE_NAME_EDUCATION_TYPE_asD; Selected: 6

INFO Round: 1; Forward Stepwise: WOE_CODE_GENDER_asD; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_OCCUPATION_TYPE_asD; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_AMT_INCOME_TOTAL_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_WORK_PHONE_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_OWN_CAR_asD; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_PHONE_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_DAYS_BIRTH_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_CNT_CHILDREN_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_EMAIL_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_NAME_INCOME_TYPE_asD; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_OCCUPATION_TYPE_asD; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_AMT_INCOME_TOTAL_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_WORK_PHONE_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_OWN_CAR_asD; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_PHONE_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_DAYS_BIRTH_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_CNT_CHILDREN_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_EMAIL_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_NAME_INCOME_TYPE_asD; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_OCCUPATION_TYPE_asD; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_AMT_INCOME_TOTAL_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_WORK_PHONE_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_OWN_CAR_asD; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_PHONE_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_DAYS_BIRTH_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_CNT_CHILDREN_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_EMAIL_asC; Selected: 7

INFO Model variables: ['Intercept', 'WOE_FLAG_OWN_REALTY_asD', 'WOE_NAME_FAMILY_STATUS_asD', 'WOE_DAYS_EMPLOYED_asC', 'WOE_NAME_HOUSING_TYPE_asD', 'WOE_NAME_EDUCATION_TYPE_asD', 'WOE_CODE_GENDER_asD'] !

INFO Building model...

INFO Saving var_desc...

INFO Saving var_cross...

INFO Saving var_unique...

INFO Saving var_summary...

INFO Saving woe_corr...

INFO Saving train_stable_summary...

INFO Saving test_stable_summary...

Optimization terminated successfully.

         Current function value: 0.091927

         Iterations 8

INFO Saving train_var_stable_iv_ks...

INFO Saving train_var_stable_psi...

INFO Saving train_var_stable_quantile...

INFO Saving test_var_stable_iv_ks...

INFO Saving test_var_stable_psi...

INFO Saving test_var_stable_quantile...

INFO Saving var_stable_cross_psi...

INFO Saving var_detail...

INFO Saving var_draft...

INFO Saving var_drop...

INFO Prepare scorecard...

INFO Adding scorecard_description to excel...

INFO Converting train proba to score...

INFO Converting woe to score...

INFO Checking scorecard equation...

INFO Saving train_var_corr...

INFO Saving train vif...

INFO Getting detail score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Converting test proba to score...

INFO Converting woe to score...

INFO Checking scorecard equation...

INFO Saving test_var_corr...

INFO Saving test vif...

INFO Getting detail score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Saving model score gap...

INFO Creating pmml...

INFO Adding score_pmml to excel...

INFO Adding run_score_pmml_in_java to excel...

INFO Creating sql...

INFO Creating check unique sql...

INFO Creating unique table sql...

INFO Creating count sql...

INFO Adding model_sql to excel...

INFO Adding run_sql_in_dataframe to excel...

INFO target | 3 | cv flow...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 43.70 s

INFO Total: 68.89 s

In [6]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/v1-lgb/v1-lgb.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="lightgbm.sklearn.LGBMClassifier",

    convert_score=False,

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_stepwise to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_corr_filter to False !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v1-lgb/Data_v1-lgb.xlsx exists !

WARNING Found n_jobs not set, setting to 2 !

WARNING Auto setting lightgbm params...

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 18...

INFO Selected: 16...

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'CNT_FAM_MEMBERS', 'CODE_GENDER', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_PHONE', 'FLAG_WORK_PHONE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE', 'OCCUPATION_TYPE'] !

WARNING Found n_jobs not set, setting to 2 !

WARNING Auto setting lightgbm params...

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000623 secs

INFO [FIT_TRANSFORM] ['Age']: 0.00057 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 0.000485 secs

INFO [FIT_TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000544 secs

INFO [FIT_TRANSFORM] ['CODE_GENDER']: 0.018621 secs

INFO [FIT_TRANSFORM] ['DAYS_BIRTH']: 0.000951 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 0.000863 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR']: 0.01844 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY']: 0.077458 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.001095 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 0.000804 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.018547 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS']: 0.07721 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE']: 0.018178 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE']: 0.075108 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE']: 0.018787 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000686 secs

INFO [TRANSFORM] ['Age']: 0.000646 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000495 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000837 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.011462 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000746 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.000544 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.075736 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.011396 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000591 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000494 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.01143 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.070248 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.011703 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.012116 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.075671 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000643 secs

INFO [TRANSFORM] ['Age']: 0.000785 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000499 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000465 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.085902 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000626 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.000469 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.005398 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.006208 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000771 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000497 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.005973 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.005635 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.005824 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.005702 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.006489 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 25.82 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Auto setting lightgbm params...

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Auto setting lightgbm params...

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Auto setting lightgbm params...

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 47.51 s

INFO Total: 47.60 s

In [7]:
at.mt.__metrics__

Out[7]:
{'binary': {'ks': None,

  'log_loss': {'eps': 1e-15,

   'normalize': True,

   'sample_weight': None,

   'labels': None},

  'r2_score': {'sample_weight': None, 'multioutput': 'uniform_average'},

  'mean_squared_error': {'sample_weight': None,

   'multioutput': 'uniform_average'},

  'roc_auc_score': {'average': 'macro', 'sample_weight': None},

  'roc_curve': {'pos_label': None,

   'sample_weight': None,

   'drop_intermediate': True},

  'average_precision_score': {'average': 'macro', 'sample_weight': None},

  'confusion_matrix': {'labels': None, 'sample_weight': None},

  'classification_report': {'f1_formulate': <function <lambda> at 0x7f3092de4860>,

   'summary_name': ('precision', 'recall', 'f1'),

   'summary_display_func': ('max', 'mean'),

   'display_func_range': ('mean', 'max', 'min', 'std', 'sum')},

  'max_distribution_percent': None,

  'psi': None},

 'regression': {'r2_score': {'sample_weight': None,

   'multioutput': 'uniform_average'},

  'mean_squared_error': {'sample_weight': None,

   'multioutput': 'uniform_average'},

  'max_distribution_percent': None,

  'psi': None}}
In [8]:
at.mt.__pattern__["model_module_path"]

Out[8]:
('sklearn.tree',

 'sklearn.ensemble',

 'imblearn.ensemble',

 'lightgbm.sklearn',

 'lightgbm',

 'xgboost.sklearn',

 'xgboost',

 'catboost',

 'statsmodels.api',

 'sklearn.linear_model',

 'sklearn.cluster',

 'sklearn.neural_network',

 'sklearn.calibration',

 'sklearn.neighbors',

 'sklearn.isotonic',

 'sklearn.discriminant_analysis',

 'sklearn.cross_decomposition',

 'sklearn.svm',

 'sklearn.gaussian_process',

 'sklearn.mixture',

 'sklearn.naive_bayes',

 'sklearn2pmml.ensemble',

 'optional.model',

 'optional.n_model',

 'optional.d_model',

 'optional.nd_model')
In [9]:
# 默认支持缺失值的模型

at.mt.__pattern__["allow_nan"]

Out[9]:
('xgboost.sklearn',

 'xgboost',

 'lightgbm.sklearn',

 'lightgbm',

 'optional.n_model',

 'optional.nd_model')
In [10]:
# 默认支持离散值的模型

at.mt.__pattern__["allow_discrete"]

Out[10]:
('xgboost.sklearn',

 'xgboost',

 'lightgbm.sklearn',

 'lightgbm',

 'catboost',

 'optional.d_model',

 'optional.nd_model')
In [11]:
# 未指定填充方式时的默认填充模式

at.mt.__pattern__["default_null_mode"]

Out[11]:
'min'
In [12]:
# train无缺失,但test存在缺失时,数值变量默认填充值

at.mt.__pattern__["nan_not_found"]

Out[12]:
-999999
In [13]:
# train无缺失,但test存在缺失时,离散变量默认填充值

at.mt.__pattern__["null_value"]

Out[13]:
'missing'
In [14]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/v2-lr/v2-lr.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight", "DAYS_BIRTH"],  # 排除权重

    add_info="ID",  # 主键添加

    task_type="regression",  # 调整为 regression

    # 非分类器会自动把 convert_score 调整为 False

    model_type_path="sklearn.linear_model.LinearRegression",

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting nan_mode to min !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Find that task_type != binary, setting convert_score to False !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v2-lr/Data_v2-lr.xlsx exists !

INFO Selecting by corr...

INFO Total: 9...

INFO Selected: 7...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 7...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 7...

INFO Selected: 7...

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'DAYS_EMPLOYED', 'FLAG_EMAIL', 'FLAG_PHONE', 'FLAG_WORK_PHONE'] !

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_jobs': 2}

INFO Using fit params: {'sample_weight': None}

INFO Using variables: 7...

INFO Training LinearRegression...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000454 secs

INFO [FIT_TRANSFORM] ['Age']: 0.000393 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 0.000224 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 0.000387 secs

INFO [FIT_TRANSFORM] ['FLAG_EMAIL']: 0.000558 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.00059 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 0.000211 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000237 secs

INFO [TRANSFORM] ['Age']: 0.000481 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000178 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.001419 secs

INFO [TRANSFORM] ['FLAG_EMAIL']: 0.000162 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000171 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000162 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000166 secs

INFO [TRANSFORM] ['Age']: 0.000135 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000134 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.000124 secs

INFO [TRANSFORM] ['FLAG_EMAIL']: 0.000136 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000128 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000127 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_jobs': 2}

INFO Using fit params: {'sample_weight': None}

INFO Using variables: 7...

INFO Training LinearRegression...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_jobs': 2}

INFO Using fit params: {'sample_weight': None}

INFO Using variables: 7...

INFO Training LinearRegression...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_jobs': 2}

INFO Using fit params: {'sample_weight': None}

INFO Using variables: 7...

INFO Training LinearRegression...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 4.69 s

INFO Total: 4.73 s

In [15]:
at.Analysis.model_on_data(

    df_train, "./模型分析demo/v1-scorecard-more/v1-scorecard-more.xlsx",

    # 同时入参两个数据集:测试、全量

    test_data=[df_test, df_data], train_name="开发", test_names=["测试", "全量"],

    data_flow={

        **data_params,

        **{

            "save_or_return": False  # 跳过csv的io读写提升性能

        },

    },

    model_flow={

        # 默认流程即为评分卡建模,采用statsmodels的逻辑回归

        "model_type_path": "statsmodels.api.Logit"

    }

)

INFO Prepare kwargs...

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting format_time_edge to True !

INFO Prepare run...

INFO Run: CNT_FAM_MEMBERS

INFO Run: OCCUPATION_TYPE

INFO Run: DAYS_BIRTH

INFO Run: FLAG_OWN_REALTY

INFO Run: CODE_GENDER

INFO Run: FLAG_MOBIL

INFO Run: NAME_EDUCATION_TYPE

INFO Run: NAME_FAMILY_STATUS

INFO Run: FLAG_PHONE

INFO Run: AMT_INCOME_TOTAL

INFO Run: NAME_HOUSING_TYPE

INFO Run: Age

INFO Run: DAYS_EMPLOYED

INFO Run: NAME_INCOME_TYPE

INFO Run: FLAG_WORK_PHONE

INFO Run: FLAG_EMAIL

INFO Run: CNT_CHILDREN

INFO Run: FLAG_OWN_CAR

INFO Selecting...

INFO Match train: OCCUPATION_TYPE_asD

INFO Match train: CNT_FAM_MEMBERS_asC

INFO Match train: FLAG_OWN_REALTY_asD

INFO Match train: CODE_GENDER_asD

INFO Match train: FLAG_PHONE_asC

INFO Match train: NAME_FAMILY_STATUS_asD

INFO Match train: NAME_EDUCATION_TYPE_asD

INFO Match train: DAYS_BIRTH_asC

INFO Match train: NAME_HOUSING_TYPE_asD

INFO Match train: NAME_INCOME_TYPE_asD

INFO Match train: CNT_CHILDREN_asC

INFO Match train: Age_asC

INFO Match train: AMT_INCOME_TOTAL_asC

INFO Match train: FLAG_WORK_PHONE_asC

INFO Match train: FLAG_OWN_CAR_asD

INFO Match train: FLAG_EMAIL_asC

INFO Match train: DAYS_EMPLOYED_asC

INFO Creating train data...

INFO Creating train corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating train cross table...

INFO Creating train all desc tables...

INFO Match test: CNT_FAM_MEMBERS_asC

INFO Match test: OCCUPATION_TYPE_asD

INFO Match test: DAYS_BIRTH_asC

INFO Match test: FLAG_OWN_REALTY_asD

INFO Match test: CODE_GENDER_asD

INFO Match test: NAME_EDUCATION_TYPE_asD

INFO Match test: NAME_FAMILY_STATUS_asD

INFO Match test: FLAG_PHONE_asC

INFO Match test: AMT_INCOME_TOTAL_asC

INFO Match test: NAME_HOUSING_TYPE_asD

INFO Match test: Age_asC

INFO Match test: DAYS_EMPLOYED_asC

INFO Match test: NAME_INCOME_TYPE_asD

INFO Match test: FLAG_WORK_PHONE_asC

INFO Match test: FLAG_EMAIL_asC

INFO Match test: FLAG_OWN_CAR_asD

INFO Match test: CNT_CHILDREN_asC

INFO Creating test data...

INFO Creating test corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating test cross table...

INFO Creating test all desc tables...

INFO Match train test: FLAG_OWN_REALTY_asD

INFO Match train test: NAME_FAMILY_STATUS_asD

INFO Match train test: DAYS_EMPLOYED_asC

INFO Match train test: NAME_INCOME_TYPE_asD

INFO Match train test: NAME_HOUSING_TYPE_asD

INFO Match train test: CODE_GENDER_asD

INFO Match train test: AMT_INCOME_TOTAL_asC

INFO Match train test: NAME_EDUCATION_TYPE_asD

INFO Match train test: OCCUPATION_TYPE_asD

INFO Match train test: FLAG_OWN_CAR_asD

INFO Match train test: FLAG_WORK_PHONE_asC

INFO Match train test: FLAG_PHONE_asC

INFO Match train test: DAYS_BIRTH_asC

INFO Match train test: FLAG_EMAIL_asC

INFO Match train test: Age_asC

INFO Match train test: CNT_CHILDREN_asC

INFO Match train test: CNT_FAM_MEMBERS_asC

INFO Saving info...

INFO Saving desc...

INFO Saving cross...

INFO Saving unique...

INFO Saving summary...

INFO Saving corr summary...

INFO Saving stable_summary...

INFO Saving train_stable_iv_ks...

INFO Saving train_stable_psi...

INFO Saving train_stable_quantile...

INFO Saving test_stable_iv_ks...

INFO Saving test_stable_psi...

INFO Saving test_stable_quantile...

INFO Saving stable_cross_psi...

INFO Saving detail...

INFO Saving draft...

INFO Saving drop...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 9.03 s

INFO Prepare kwargs...

WARNING Using response as split_col_name !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting nan_mode to min !

WARNING Find that convert_score is True, setting precision to 0 !

INFO Model linear flow...

WARNING Find that convert_score is True & save_score_pmml is True, setting save_model_pmml to False !

INFO Selecting by corr...

INFO Total: 17...

INFO Selected: 15...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 15...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 15...

INFO Selected: 15...

INFO Round: 1; Forward Stepwise: WOE_FLAG_OWN_REALTY_asD; Selected: 2

INFO Round: 1; Forward Stepwise: WOE_NAME_FAMILY_STATUS_asD; Selected: 3

INFO Round: 1; Forward Stepwise: WOE_DAYS_EMPLOYED_asC; Selected: 4

INFO Round: 1; Forward Stepwise: WOE_NAME_INCOME_TYPE_asD; Selected: 4

INFO Round: 1; Forward Stepwise: WOE_NAME_HOUSING_TYPE_asD; Selected: 5

INFO Round: 1; Forward Stepwise: WOE_NAME_EDUCATION_TYPE_asD; Selected: 6

INFO Round: 1; Forward Stepwise: WOE_CODE_GENDER_asD; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_OCCUPATION_TYPE_asD; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_AMT_INCOME_TOTAL_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_WORK_PHONE_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_OWN_CAR_asD; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_PHONE_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_DAYS_BIRTH_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_CNT_CHILDREN_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_EMAIL_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_NAME_INCOME_TYPE_asD; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_OCCUPATION_TYPE_asD; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_AMT_INCOME_TOTAL_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_WORK_PHONE_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_OWN_CAR_asD; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_PHONE_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_DAYS_BIRTH_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_CNT_CHILDREN_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_EMAIL_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_NAME_INCOME_TYPE_asD; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_OCCUPATION_TYPE_asD; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_AMT_INCOME_TOTAL_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_WORK_PHONE_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_OWN_CAR_asD; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_PHONE_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_DAYS_BIRTH_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_CNT_CHILDREN_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_EMAIL_asC; Selected: 7

INFO Model variables: ['Intercept', 'WOE_FLAG_OWN_REALTY_asD', 'WOE_NAME_FAMILY_STATUS_asD', 'WOE_DAYS_EMPLOYED_asC', 'WOE_NAME_HOUSING_TYPE_asD', 'WOE_NAME_EDUCATION_TYPE_asD', 'WOE_CODE_GENDER_asD'] !

INFO Building model...

INFO Saving var_desc...

INFO Saving var_cross...

INFO Saving var_unique...

INFO Saving var_summary...

INFO Saving woe_corr...

INFO Saving train_stable_summary...

INFO Saving test_stable_summary...

INFO Saving train_var_stable_iv_ks...

INFO Saving train_var_stable_psi...

INFO Saving train_var_stable_quantile...

INFO Saving test_var_stable_iv_ks...

INFO Saving test_var_stable_psi...

INFO Saving test_var_stable_quantile...

INFO Saving var_stable_cross_psi...

INFO Saving var_detail...

Optimization terminated successfully.

         Current function value: 0.091927

         Iterations 8

INFO Saving var_draft...

INFO Saving var_drop...

INFO Prepare scorecard...

INFO Adding scorecard_description to excel...

INFO Converting train proba to score...

INFO Converting woe to score...

INFO Checking scorecard equation...

INFO Saving train_var_corr...

INFO Saving train vif...

INFO Getting detail score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Converting test proba to score...

INFO Converting woe to score...

INFO Checking scorecard equation...

INFO Saving test_var_corr...

INFO Saving test vif...

INFO Getting detail score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Saving model score gap...

INFO Creating pmml...

INFO Adding score_pmml to excel...

INFO Adding run_score_pmml_in_java to excel...

INFO Creating sql...

INFO Creating check unique sql...

INFO Creating unique table sql...

INFO Creating count sql...

INFO Adding model_sql to excel...

INFO Adding run_sql_in_dataframe to excel...

INFO target | 3 | cv flow...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 19.18 s

WARNING Find that recover_from_pkl is True, setting recover_pkl to /home/conda_env/模型分析demo/v1-scorecard-more/Data_v1-scorecard-more-开发-测试_data.pkl !

INFO Prepare kwargs...

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING customized_groups: "CNT_FAM_MEMBERS", "FLAG_PHONE", "AMT_INCOME_TOTAL", "OCCUPATION_TYPE", "Age", "DAYS_BIRTH", "NAME_INCOME_TYPE", "FLAG_WORK_PHONE", "FLAG_EMAIL", "CNT_CHILDREN", "FLAG_OWN_CAR" not in data !

WARNING exclude_column: "weight" not in data !

WARNING Setting format_time_edge to True !

INFO Match train: NAME_HOUSING_TYPE_asD

INFO Match train: DAYS_EMPLOYED_asC

INFO Match train: FLAG_OWN_REALTY_asD

INFO Match train: CODE_GENDER_asD

INFO Match train: NAME_EDUCATION_TYPE_asD

INFO Match train: NAME_FAMILY_STATUS_asD

INFO Creating train data...

INFO Creating train corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating train cross table...

INFO Creating train all desc tables...

INFO Match test: NAME_HOUSING_TYPE_asD

INFO Match test: DAYS_EMPLOYED_asC

INFO Match test: FLAG_OWN_REALTY_asD

INFO Match test: CODE_GENDER_asD

INFO Match test: NAME_EDUCATION_TYPE_asD

INFO Match test: NAME_FAMILY_STATUS_asD

INFO Creating test data...

INFO Creating test corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating test cross table...

INFO Creating test all desc tables...

INFO Match train test: NAME_FAMILY_STATUS_asD

INFO Match train test: NAME_EDUCATION_TYPE_asD

INFO Match train test: DAYS_EMPLOYED_asC

INFO Match train test: CODE_GENDER_asD

INFO Match train test: NAME_HOUSING_TYPE_asD

INFO Match train test: FLAG_OWN_REALTY_asD

INFO Saving info...

INFO Saving desc...

INFO Saving cross...

INFO Saving unique...

INFO Saving summary...

INFO Saving corr summary...

INFO Saving stable_summary...

INFO Saving train_stable_iv_ks...

INFO Saving train_stable_psi...

INFO Saving train_stable_quantile...

INFO Saving test_stable_iv_ks...

INFO Saving test_stable_psi...

INFO Saving test_stable_quantile...

INFO Saving stable_cross_psi...

INFO Saving detail...

INFO Saving draft...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 5.96 s

WARNING Find that recover_from_pkl is True, setting recover_pkl to /home/conda_env/模型分析demo/v1-scorecard-more/Model_v1-scorecard-more-开发-测试_model.pkl !

WARNING Find that recover_from_pkl is True, setting filter_variable to False !

INFO Prepare kwargs...

WARNING Using response as split_col_name !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Find that filter_variable is False, setting zero_imp_filter to False !

WARNING Find that filter_variable is False, setting enable_stepwise to False !

WARNING Find that filter_variable is False, setting enable_corr_filter to False !

WARNING Find that filter_variable is False, setting limit_var_num to inf !

INFO Model linear flow...

WARNING Find that convert_score is True & save_score_pmml is True, setting save_model_pmml to False !

INFO Model variables: ['Intercept', 'WOE_FLAG_OWN_REALTY_asD', 'WOE_NAME_FAMILY_STATUS_asD', 'WOE_DAYS_EMPLOYED_asC', 'WOE_NAME_HOUSING_TYPE_asD', 'WOE_NAME_EDUCATION_TYPE_asD', 'WOE_CODE_GENDER_asD'] !

INFO Saving var_desc...

INFO Saving var_cross...

INFO Saving var_unique...

INFO Saving var_summary...

INFO Saving woe_corr...

INFO Saving train_stable_summary...

INFO Saving test_stable_summary...

INFO Saving train_var_stable_iv_ks...

INFO Saving train_var_stable_psi...

INFO Saving train_var_stable_quantile...

INFO Saving test_var_stable_iv_ks...

INFO Saving test_var_stable_psi...

INFO Saving test_var_stable_quantile...

INFO Saving var_stable_cross_psi...

INFO Saving var_detail...

INFO Saving var_draft...

INFO Saving var_drop...

INFO Prepare scorecard...

INFO Adding scorecard_description to excel...

INFO Converting train proba to score...

INFO Converting woe to score...

INFO Checking scorecard equation...

INFO Saving train_var_corr...

INFO Saving train vif...

INFO Getting detail score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Converting test proba to score...

INFO Converting woe to score...

INFO Checking scorecard equation...

INFO Saving test_var_corr...

INFO Saving test vif...

INFO Getting detail score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Saving model score gap...

INFO Creating pmml...

INFO Adding score_pmml to excel...

INFO Adding run_score_pmml_in_java to excel...

INFO Creating sql...

INFO Creating check unique sql...

INFO Creating unique table sql...

INFO Creating count sql...

INFO Adding model_sql to excel...

INFO Adding run_sql_in_dataframe to excel...

INFO target | 3 | cv flow...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 16.18 s

INFO Total: 66.07 s

In [16]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/v1-lgb-more/v1-lgb-more.xlsx",

    test_data=[df_test, df_data], train_name="开发", test_names=["测试", "全量"],

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="lightgbm.sklearn.LGBMClassifier",

    convert_score=False,

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_stepwise to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_corr_filter to False !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v1-lgb-more/Data_v1-lgb-more-开发-测试.xlsx exists !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 18...

INFO Selected: 16...

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'CNT_FAM_MEMBERS', 'CODE_GENDER', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_PHONE', 'FLAG_WORK_PHONE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE', 'OCCUPATION_TYPE'] !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000113 secs

INFO [FIT_TRANSFORM] ['Age']: 7.9e-05 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 9.4e-05 secs

INFO [FIT_TRANSFORM] ['CNT_FAM_MEMBERS']: 7.9e-05 secs

INFO [FIT_TRANSFORM] ['CODE_GENDER']: 0.02006 secs

INFO [FIT_TRANSFORM] ['DAYS_BIRTH']: 0.000153 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 6.3e-05 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR']: 0.01895 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY']: 0.021502 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.001273 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 7e-05 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.019162 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS']: 0.02098 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE']: 0.02084 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE']: 0.020211 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE']: 0.020722 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000156 secs

INFO [TRANSFORM] ['Age']: 9.2e-05 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 7.4e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.00014 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.011554 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000293 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.000162 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.011333 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.011454 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000311 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 8.5e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.012984 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.011524 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.012529 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.012884 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.015233 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000126 secs

INFO [TRANSFORM] ['Age']: 6.3e-05 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 6e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000143 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.004926 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000122 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 6.8e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.005331 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.005001 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000111 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 6.8e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.005402 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.006028 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.00524 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.005387 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.005733 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 10.96 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 17.99 s

WARNING Find that recover_from_pkl is True, setting recover_pkl to /home/conda_env/模型分析demo/v1-lgb-more/Model_v1-lgb-more-开发-测试_model.pkl !

WARNING Find that recover_from_pkl is True, setting filter_variable to False !

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Find that filter_variable is False, setting zero_imp_filter to False !

WARNING Find that filter_variable is False, setting enable_stepwise to False !

WARNING Find that filter_variable is False, setting enable_corr_filter to False !

WARNING Find that filter_variable is False, setting limit_var_num to inf !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v1-lgb-more/Data_v1-lgb-more-开发-全量.xlsx exists !

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'CNT_FAM_MEMBERS', 'CODE_GENDER', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_PHONE', 'FLAG_WORK_PHONE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE', 'OCCUPATION_TYPE'] !

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000173 secs

INFO [TRANSFORM] ['Age']: 0.000145 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 7e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 7.8e-05 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.01188 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000169 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 8.3e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.01168 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.011731 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.001943 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.00012 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.011784 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.01232 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.012263 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.012315 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.014607 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000143 secs

INFO [TRANSFORM] ['Age']: 7.8e-05 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 9.6e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 8.9e-05 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.016006 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000165 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 8.3e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.016089 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.01686 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000136 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 7.3e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.017034 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.016727 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.017639 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.018483 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.019547 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 11.29 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000173 secs

INFO [TRANSFORM] ['Age']: 0.000151 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000123 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 7.8e-05 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.008309 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000146 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 9.2e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.007447 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.008227 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 9e-05 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 5.8e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.008212 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.008383 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.011118 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.010107 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.010068 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000141 secs

INFO [TRANSFORM] ['Age']: 0.00021 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 6.8e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 8.4e-05 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.00394 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 8.1e-05 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 6.1e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.0042 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.004233 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000111 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000155 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.004561 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.005336 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.004363 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.004537 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.004724 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000125 secs

INFO [TRANSFORM] ['Age']: 6.4e-05 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 8.4e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 6.7e-05 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.007827 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000136 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 6.5e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.009865 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.007965 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000157 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 9.4e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.008337 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.008132 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.009601 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.010023 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.009893 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000113 secs

INFO [TRANSFORM] ['Age']: 0.00012 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 6.5e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 7.3e-05 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.004985 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000177 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 8.3e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.003944 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.005893 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000143 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 7.1e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.004077 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.006119 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.003912 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.004759 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.005056 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000131 secs

INFO [TRANSFORM] ['Age']: 0.00122 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.00027 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 9e-05 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.007708 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000338 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 7.3e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.00826 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.008157 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000102 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 9.1e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.008398 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.008383 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.008676 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.008231 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.0092 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000106 secs

INFO [TRANSFORM] ['Age']: 6e-05 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 6.1e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000271 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.004261 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 6.7e-05 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 5.8e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.003992 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.003872 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000136 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 8.7e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.004066 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.004324 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.004113 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.004058 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.005868 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 18.22 s

INFO Total: 37.91 s

In [17]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/v3-lgb/v3-lgb.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="lightgbm.sklearn.LGBMClassifier",

    convert_score=False,

    model_filter_order=["corr", "rank"],

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_stepwise to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_corr_filter to False !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v3-lgb/Data_v3-lgb.xlsx exists !

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'CNT_FAM_MEMBERS', 'CODE_GENDER', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_EMAIL', 'FLAG_MOBIL', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_PHONE', 'FLAG_WORK_PHONE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE', 'OCCUPATION_TYPE'] !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.001351 secs

INFO [FIT_TRANSFORM] ['Age']: 0.000128 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 6.7e-05 secs

INFO [FIT_TRANSFORM] ['CNT_FAM_MEMBERS']: 7.5e-05 secs

INFO [FIT_TRANSFORM] ['CODE_GENDER']: 0.01885 secs

INFO [FIT_TRANSFORM] ['DAYS_BIRTH']: 0.000139 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 0.00026 secs

INFO [FIT_TRANSFORM] ['FLAG_EMAIL']: 0.000103 secs

INFO [FIT_TRANSFORM] ['FLAG_MOBIL']: 0.000114 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR']: 0.018752 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY']: 0.0207 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.000142 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 5.9e-05 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.01953 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS']: 0.019331 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE']: 0.021695 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE']: 0.019271 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE']: 0.017771 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000148 secs

INFO [TRANSFORM] ['Age']: 0.000149 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000102 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000191 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.011311 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000133 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 6.5e-05 secs

INFO [TRANSFORM] ['FLAG_EMAIL']: 0.000263 secs

INFO [TRANSFORM] ['FLAG_MOBIL']: 7.8e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.011771 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.012094 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000189 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000202 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.012779 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.013942 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.012566 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.013192 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.015614 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000122 secs

INFO [TRANSFORM] ['Age']: 8.1e-05 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 6.1e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 7.3e-05 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.005252 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 8.5e-05 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 5.9e-05 secs

INFO [TRANSFORM] ['FLAG_EMAIL']: 0.00018 secs

INFO [TRANSFORM] ['FLAG_MOBIL']: 0.000114 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.005164 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.005112 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000122 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000346 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.005481 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.006932 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.005272 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.005491 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.005691 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 10.89 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 17.80 s

INFO Total: 17.85 s

In [18]:
discrete_cols = df_train.dtypes[df_train.dtypes == object].index.tolist()

at.Analysis.model_flow(

    df_train, "./模型分析demo/v4-lgb/v4-lgb.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"] + discrete_cols,  # 排除权重和离散值

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="lightgbm.sklearn.LGBMClassifier",

    convert_score=False,

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Unable to find discrete data, setting allow_discrete to False !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v4-lgb/Data_v4-lgb.xlsx exists !

INFO Selecting by corr...

INFO Total: 10...

INFO Selected: 7...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 7...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 7...

INFO Selected: 6...

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'DAYS_EMPLOYED', 'FLAG_PHONE', 'FLAG_WORK_PHONE'] !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000124 secs

INFO [FIT_TRANSFORM] ['Age']: 9e-05 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 6.1e-05 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 0.000121 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.001366 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 0.001265 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000248 secs

INFO [TRANSFORM] ['Age']: 0.000196 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000272 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.000496 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 7.6e-05 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 7.5e-05 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000121 secs

INFO [TRANSFORM] ['Age']: 0.000125 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 7e-05 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 6.2e-05 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 6.1e-05 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 6.6e-05 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 10.69 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 17.51 s

INFO Total: 17.56 s

In [19]:
at.mt.__pattern__["tree_default_params"]

Out[19]:
{'max_depth': 3, 'n_estimators': 30}
In [20]:
at.Analysis.model_on_data(

    df_train, "./模型分析demo/v5-gls/v5-gls.xlsx", test_data=df_test,

    data_flow={

        **data_params,

        **{

            "save_ori": True,  # 数据集仅保留原始数据,会自动添加"ORI_"

            "save_or_return": False  # 跳过csv的io读写提升性能

        },

    },

    model_flow={

        # 更换模型,非discrete模型会自动关闭convert_score

        "model_type_path": "statsmodels.api.GLS",

        "pvalue_filter_limit": 0.5,  # 变量较少,此处调整pvalue阈值避免无变量

        # stepwise时按ORI_取值,enable_coef_negative取None跳过,check_coef_consistency取True开启

        "model_filter_order": ["corr", "stepwise"],

    }

)

INFO Prepare kwargs...

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Find that flow_data_type is ORI_, setting save_woe_data to False !

WARNING Setting format_time_edge to True !

INFO Prepare run...

INFO Run: CNT_FAM_MEMBERS

INFO Run: OCCUPATION_TYPE

INFO Run: DAYS_BIRTH

INFO Run: FLAG_OWN_REALTY

INFO Run: CODE_GENDER

INFO Run: FLAG_MOBIL

INFO Run: NAME_EDUCATION_TYPE

INFO Run: NAME_FAMILY_STATUS

INFO Run: FLAG_PHONE

INFO Run: AMT_INCOME_TOTAL

INFO Run: NAME_HOUSING_TYPE

INFO Run: Age

INFO Run: DAYS_EMPLOYED

INFO Run: NAME_INCOME_TYPE

INFO Run: FLAG_WORK_PHONE

INFO Run: FLAG_EMAIL

INFO Run: CNT_CHILDREN

INFO Run: FLAG_OWN_CAR

INFO Selecting...

INFO Match train: CODE_GENDER_asD

INFO Match train: OCCUPATION_TYPE_asD

INFO Match train: FLAG_OWN_REALTY_asD

INFO Match train: CNT_FAM_MEMBERS_asC

INFO Match train: FLAG_PHONE_asC

INFO Match train: NAME_FAMILY_STATUS_asD

INFO Match train: NAME_EDUCATION_TYPE_asD

INFO Match train: DAYS_BIRTH_asC

INFO Match train: NAME_HOUSING_TYPE_asD

INFO Match train: NAME_INCOME_TYPE_asD

INFO Match train: FLAG_WORK_PHONE_asC

INFO Match train: AMT_INCOME_TOTAL_asC

INFO Match train: Age_asC

INFO Match train: FLAG_EMAIL_asC

INFO Match train: CNT_CHILDREN_asC

INFO Match train: FLAG_OWN_CAR_asD

INFO Match train: DAYS_EMPLOYED_asC

INFO Creating train data...

INFO Creating train corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating train cross table...

INFO Creating train all desc tables...

INFO Match test: CNT_FAM_MEMBERS_asC

INFO Match test: OCCUPATION_TYPE_asD

INFO Match test: DAYS_BIRTH_asC

INFO Match test: FLAG_OWN_REALTY_asD

INFO Match test: CODE_GENDER_asD

INFO Match test: NAME_EDUCATION_TYPE_asD

INFO Match test: NAME_FAMILY_STATUS_asD

INFO Match test: FLAG_PHONE_asC

INFO Match test: AMT_INCOME_TOTAL_asC

INFO Match test: NAME_HOUSING_TYPE_asD

INFO Match test: Age_asC

INFO Match test: DAYS_EMPLOYED_asC

INFO Match test: NAME_INCOME_TYPE_asD

INFO Match test: FLAG_WORK_PHONE_asC

INFO Match test: FLAG_EMAIL_asC

INFO Match test: CNT_CHILDREN_asC

INFO Match test: FLAG_OWN_CAR_asD

INFO Creating test data...

INFO Creating test corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating test cross table...

INFO Creating test all desc tables...

INFO Match train test: FLAG_OWN_REALTY_asD

INFO Match train test: NAME_FAMILY_STATUS_asD

INFO Match train test: DAYS_EMPLOYED_asC

INFO Match train test: NAME_INCOME_TYPE_asD

INFO Match train test: NAME_HOUSING_TYPE_asD

INFO Match train test: CODE_GENDER_asD

INFO Match train test: OCCUPATION_TYPE_asD

INFO Match train test: NAME_EDUCATION_TYPE_asD

INFO Match train test: AMT_INCOME_TOTAL_asC

INFO Match train test: FLAG_WORK_PHONE_asC

INFO Match train test: FLAG_OWN_CAR_asD

INFO Match train test: FLAG_PHONE_asC

INFO Match train test: DAYS_BIRTH_asC

INFO Match train test: Age_asC

INFO Match train test: FLAG_EMAIL_asC

INFO Match train test: CNT_CHILDREN_asC

INFO Match train test: CNT_FAM_MEMBERS_asC

INFO Saving info...

INFO Saving desc...

INFO Saving cross...

INFO Saving unique...

INFO Saving summary...

INFO Saving corr summary...

INFO Saving stable_summary...

INFO Saving train_stable_iv_ks...

INFO Saving train_stable_psi...

INFO Saving train_stable_quantile...

INFO Saving test_stable_iv_ks...

INFO Saving test_stable_psi...

INFO Saving test_stable_quantile...

INFO Saving stable_cross_psi...

INFO Saving detail...

INFO Saving draft...

INFO Saving drop...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 9.06 s

INFO Prepare kwargs...

WARNING Using response as split_col_name !

WARNING Pre: WOE_ not found, and ORI_ found, change pre to ORI_ !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting nan_mode to min !

WARNING Find that is_stats_model is True and GLS is not statsmodels.discrete.discrete_model.BinaryModel, setting convert_score to False !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model linear flow...

INFO Selecting by corr...

INFO Total: 9...

INFO Selected: 7...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 7...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 7...

INFO Selected: 7...

INFO Caching var coef...

INFO Caching ORI_DAYS_EMPLOYED_asC single coef...

INFO Caching ORI_AMT_INCOME_TOTAL_asC single coef...

INFO Caching ORI_FLAG_WORK_PHONE_asC single coef...

INFO Caching ORI_FLAG_PHONE_asC single coef...

INFO Caching ORI_DAYS_BIRTH_asC single coef...

INFO Caching ORI_CNT_CHILDREN_asC single coef...

INFO Caching ORI_FLAG_EMAIL_asC single coef...

INFO Caching Intercept single coef...

INFO Round: 1; Forward Stepwise: ORI_DAYS_EMPLOYED_asC; Selected: 2

INFO Round: 1; Forward Stepwise: ORI_AMT_INCOME_TOTAL_asC; Selected: 2

INFO Round: 1; Forward Stepwise: ORI_FLAG_WORK_PHONE_asC; Selected: 3

INFO Round: 1; Forward Stepwise: ORI_FLAG_PHONE_asC; Selected: 4

INFO Round: 1; Forward Stepwise: ORI_DAYS_BIRTH_asC; Selected: 5

INFO Round: 1; Forward Stepwise: ORI_CNT_CHILDREN_asC; Selected: 5

INFO Round: 1; Forward Stepwise: ORI_FLAG_EMAIL_asC; Selected: 5

INFO Round: 2; Forward Stepwise: ORI_AMT_INCOME_TOTAL_asC; Selected: 5

INFO Round: 2; Forward Stepwise: ORI_CNT_CHILDREN_asC; Selected: 5

INFO Round: 2; Forward Stepwise: ORI_FLAG_EMAIL_asC; Selected: 5

INFO Round: 3; Forward Stepwise: ORI_AMT_INCOME_TOTAL_asC; Selected: 5

INFO Round: 3; Forward Stepwise: ORI_CNT_CHILDREN_asC; Selected: 5

INFO Round: 3; Forward Stepwise: ORI_FLAG_EMAIL_asC; Selected: 5

INFO Model variables: ['Intercept', 'ORI_DAYS_EMPLOYED_asC', 'ORI_FLAG_WORK_PHONE_asC', 'ORI_FLAG_PHONE_asC', 'ORI_DAYS_BIRTH_asC'] !

INFO Building model...

INFO Saving var_desc...

INFO Saving var_cross...

INFO Saving var_unique...

INFO Saving var_summary...

INFO Saving ori_corr...

INFO Saving train_stable_summary...

INFO Saving test_stable_summary...

INFO Saving train_var_stable_iv_ks...

INFO Saving train_var_stable_psi...

INFO Saving train_var_stable_quantile...

INFO Saving test_var_stable_iv_ks...

INFO Saving test_var_stable_psi...

INFO Saving test_var_stable_quantile...

INFO Saving var_stable_cross_psi...

INFO Saving var_detail...

INFO Saving var_draft...

INFO Saving var_drop...

INFO Saving train_var_corr...

INFO Saving train vif...

INFO Getting detail score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test_var_corr...

INFO Saving test vif...

INFO Getting detail score...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO target | 3 | cv flow...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 14.71 s

INFO Total: 23.86 s

In [21]:
discrete_cols = df_train.dtypes[df_train.dtypes == object].index.tolist()

at.Analysis.model_flow(

    df_train, "./模型分析demo/v6-lgb/v6-lgb.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重和离散值

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="lightgbm.sklearn.LGBMClassifier",

    convert_score=False,

    customized_variables=discrete_cols,

)

WARNING Find that recover_from_json is None and customized_variables is not empty, setting filter_variable to False !

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Find that filter_variable is False, setting zero_imp_filter to False !

WARNING Find that filter_variable is False, setting enable_stepwise to False !

WARNING Find that filter_variable is False, setting enable_corr_filter to False !

WARNING Find that filter_variable is False, setting limit_var_num to inf !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v6-lgb/Data_v6-lgb.xlsx exists !

INFO Model variables: ['CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'OCCUPATION_TYPE'] !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [0, 1, 2, 3, 4, 5, 6, 7]}

INFO Using variables: 8...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['CODE_GENDER']: 0.018618 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR']: 0.019903 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY']: 0.0203 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE']: 0.020431 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.020034 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS']: 0.02233 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE']: 0.020196 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE']: 0.019022 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.01204 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.012493 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.012632 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.012978 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.012779 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.014557 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.012711 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.016715 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.005002 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.005611 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.005267 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.006002 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.005521 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.005132 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.005163 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.006638 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 11.32 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [0, 1, 2, 3, 4, 5, 6, 7]}

INFO Using variables: 8...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [0, 1, 2, 3, 4, 5, 6, 7]}

INFO Using variables: 8...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [0, 1, 2, 3, 4, 5, 6, 7]}

INFO Using variables: 8...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 18.49 s

INFO Total: 18.54 s

In [22]:
not_discrete_cols = df_train.dtypes[df_train.dtypes != object].index.tolist()

at.Analysis.model_on_data(

    df_train, "./模型分析demo/v6-lgb-oh/v6-lgb-oh.xlsx", test_data=df_test,

    data_flow={

        **data_params,

        **{

            "save_one_hot": True,  # 数据集仅保留原始数据,会自动添加"ORI_"

            "save_or_return": False,  # 跳过csv的io读写提升性能

            "exclude_column": ["ID", "weight"] + not_discrete_cols,  # 排除权重和数值变量

        },

    },

    model_flow={

        "response": "target", "split_col_name": "birth_year", "use_train_time": True,

        "exclude_column": ["ID", "weight"],  # 排除权重和离散值

        "add_info": "ID",  # 主键添加

        # 指定使用训练的class并不进行打分转化

        "model_type_path": "lightgbm.sklearn.LGBMClassifier", "convert_score": False,

        "filter_variable": False, # 数据one-hot之后变量名会变化,data_flow已经限制范围了,直接设置filter_variables能达到一样的效果

    }

)

INFO Prepare kwargs...

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Find that save_one_hot is True, setting save_woe_data to False !

WARNING Setting format_time_edge to True !

INFO Prepare run...

INFO Run: OCCUPATION_TYPE

INFO Run: NAME_HOUSING_TYPE

INFO Run: NAME_INCOME_TYPE

INFO Run: FLAG_OWN_REALTY

INFO Run: CODE_GENDER

INFO Run: NAME_EDUCATION_TYPE

INFO Run: FLAG_OWN_CAR

INFO Run: NAME_FAMILY_STATUS

INFO Selecting...

INFO Match train: CODE_GENDER_asD

INFO Match train: OCCUPATION_TYPE_asD

INFO Match train: FLAG_OWN_REALTY_asD

INFO Match train: NAME_HOUSING_TYPE_asD

INFO Match train: NAME_INCOME_TYPE_asD

INFO Match train: NAME_EDUCATION_TYPE_asD

INFO Match train: FLAG_OWN_CAR_asD

INFO Match train: NAME_FAMILY_STATUS_asD

INFO Creating train data...

INFO Creating train corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating train cross table...

INFO Creating train all desc tables...

INFO Match test: OCCUPATION_TYPE_asD

INFO Match test: NAME_HOUSING_TYPE_asD

INFO Match test: NAME_INCOME_TYPE_asD

INFO Match test: FLAG_OWN_REALTY_asD

INFO Match test: CODE_GENDER_asD

INFO Match test: NAME_EDUCATION_TYPE_asD

INFO Match test: FLAG_OWN_CAR_asD

INFO Match test: NAME_FAMILY_STATUS_asD

INFO Creating test data...

INFO Creating test corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating test cross table...

INFO Creating test all desc tables...

INFO Match train test: FLAG_OWN_REALTY_asD

INFO Match train test: NAME_FAMILY_STATUS_asD

INFO Match train test: NAME_INCOME_TYPE_asD

INFO Match train test: NAME_EDUCATION_TYPE_asD

INFO Match train test: NAME_HOUSING_TYPE_asD

INFO Match train test: FLAG_OWN_CAR_asD

INFO Match train test: OCCUPATION_TYPE_asD

INFO Match train test: CODE_GENDER_asD

INFO Saving info...

INFO Saving desc...

INFO Saving cross...

INFO Saving unique...

INFO Saving summary...

INFO Saving corr summary...

INFO Saving stable_summary...

INFO Saving train_stable_iv_ks...

INFO Saving train_stable_psi...

INFO Saving test_stable_iv_ks...

INFO Saving test_stable_psi...

INFO Saving stable_cross_psi...

INFO Saving detail...

INFO Saving draft...

INFO Saving drop...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 7.13 s

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

WARNING exclude_column: "weight" not in data !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Unable to find discrete data, setting allow_discrete to False !

WARNING Find that filter_variable is False, setting zero_imp_filter to False !

WARNING Find that filter_variable is False, setting enable_stepwise to False !

WARNING Find that filter_variable is False, setting enable_corr_filter to False !

WARNING Find that filter_variable is False, setting limit_var_num to inf !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

INFO Model variables: ['CODE_GENDER_asD:F', 'CODE_GENDER_asD:M', 'FLAG_OWN_CAR_asD:N', 'FLAG_OWN_CAR_asD:Y', 'FLAG_OWN_REALTY_asD:N', 'FLAG_OWN_REALTY_asD:Y', 'NAME_EDUCATION_TYPE_asD:Academic degree', 'NAME_EDUCATION_TYPE_asD:Higher education', 'NAME_EDUCATION_TYPE_asD:Incomplete higher', 'NAME_EDUCATION_TYPE_asD:Lower secondary', 'NAME_EDUCATION_TYPE_asD:Secondary / secondary special', 'NAME_FAMILY_STATUS_asD:Civil marriage', 'NAME_FAMILY_STATUS_asD:Married', 'NAME_FAMILY_STATUS_asD:Separated', 'NAME_FAMILY_STATUS_asD:Single / not married', 'NAME_FAMILY_STATUS_asD:Widow', 'NAME_HOUSING_TYPE_asD:Co-op apartment', 'NAME_HOUSING_TYPE_asD:House / apartment', 'NAME_HOUSING_TYPE_asD:Municipal apartment', 'NAME_HOUSING_TYPE_asD:Office apartment', 'NAME_HOUSING_TYPE_asD:Rented apartment', 'NAME_HOUSING_TYPE_asD:With parents', 'NAME_INCOME_TYPE_asD:Commercial associate', 'NAME_INCOME_TYPE_asD:Pensioner', 'NAME_INCOME_TYPE_asD:State servant', 'NAME_INCOME_TYPE_asD:Student', 'NAME_INCOME_TYPE_asD:Working', 'OCCUPATION_TYPE_asD:Accountants', 'OCCUPATION_TYPE_asD:Cleaning staff', 'OCCUPATION_TYPE_asD:Cooking staff', 'OCCUPATION_TYPE_asD:Core staff', 'OCCUPATION_TYPE_asD:Drivers', 'OCCUPATION_TYPE_asD:HR staff', 'OCCUPATION_TYPE_asD:High skill tech staff', 'OCCUPATION_TYPE_asD:IT staff', 'OCCUPATION_TYPE_asD:Laborers', 'OCCUPATION_TYPE_asD:Low-skill Laborers', 'OCCUPATION_TYPE_asD:Managers', 'OCCUPATION_TYPE_asD:Medicine staff', 'OCCUPATION_TYPE_asD:Private service staff', 'OCCUPATION_TYPE_asD:Realty agents', 'OCCUPATION_TYPE_asD:Sales staff', 'OCCUPATION_TYPE_asD:Secretaries', 'OCCUPATION_TYPE_asD:Security staff', 'OCCUPATION_TYPE_asD:Waiters/barmen staff', 'OCCUPATION_TYPE_asD:missing'] !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 46...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['CODE_GENDER_asD:F']: 0.000151 secs

INFO [FIT_TRANSFORM] ['CODE_GENDER_asD:M']: 9.9e-05 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR_asD:N']: 7.2e-05 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR_asD:Y']: 7.4e-05 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY_asD:N']: 7.8e-05 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY_asD:Y']: 6.8e-05 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Academic degree']: 8.4e-05 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Higher education']: 6.1e-05 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Incomplete higher']: 8.1e-05 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Lower secondary']: 6.7e-05 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Secondary / secondary special']: 6.8e-05 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS_asD:Civil marriage']: 7.6e-05 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS_asD:Married']: 6.8e-05 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS_asD:Separated']: 6.9e-05 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS_asD:Single / not married']: 7.1e-05 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS_asD:Widow']: 6.5e-05 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE_asD:Co-op apartment']: 6.7e-05 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE_asD:House / apartment']: 7e-05 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE_asD:Municipal apartment']: 7.5e-05 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE_asD:Office apartment']: 7.3e-05 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE_asD:Rented apartment']: 7.2e-05 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE_asD:With parents']: 0.000512 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE_asD:Commercial associate']: 9.4e-05 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE_asD:Pensioner']: 9.4e-05 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE_asD:State servant']: 0.000135 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE_asD:Student']: 0.000102 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE_asD:Working']: 6.9e-05 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Accountants']: 8.7e-05 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Cleaning staff']: 6.7e-05 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Cooking staff']: 7.1e-05 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Core staff']: 0.000694 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Drivers']: 8.5e-05 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:HR staff']: 0.000736 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:High skill tech staff']: 0.000762 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:IT staff']: 0.000121 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Laborers']: 7.2e-05 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Low-skill Laborers']: 8.4e-05 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Managers']: 7.1e-05 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Medicine staff']: 6.6e-05 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Private service staff']: 8e-05 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Realty agents']: 8.3e-05 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Sales staff']: 0.000209 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Secretaries']: 0.000509 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Security staff']: 0.000145 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:Waiters/barmen staff']: 0.000263 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE_asD:missing']: 0.000194 secs

INFO [TRANSFORM] ['CODE_GENDER_asD:F']: 0.000138 secs

INFO [TRANSFORM] ['CODE_GENDER_asD:M']: 6.5e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR_asD:N']: 7.8e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR_asD:Y']: 6.9e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY_asD:N']: 0.000134 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY_asD:Y']: 7.7e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Academic degree']: 6.3e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Higher education']: 7.1e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Incomplete higher']: 9.9e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Lower secondary']: 7.5e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Secondary / secondary special']: 6.9e-05 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS_asD:Civil marriage']: 7e-05 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS_asD:Married']: 0.0001 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS_asD:Separated']: 6.8e-05 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS_asD:Single / not married']: 6.7e-05 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS_asD:Widow']: 7.1e-05 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:Co-op apartment']: 6.9e-05 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:House / apartment']: 7.5e-05 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:Municipal apartment']: 7.6e-05 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:Office apartment']: 0.000156 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:Rented apartment']: 8.8e-05 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:With parents']: 7.1e-05 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE_asD:Commercial associate']: 6.6e-05 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE_asD:Pensioner']: 6.4e-05 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE_asD:State servant']: 7.1e-05 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE_asD:Student']: 7.2e-05 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE_asD:Working']: 6.4e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Accountants']: 7.9e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Cleaning staff']: 0.000134 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Cooking staff']: 0.000597 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Core staff']: 0.000107 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Drivers']: 8.1e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:HR staff']: 0.000103 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:High skill tech staff']: 9.3e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:IT staff']: 8.2e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Laborers']: 7.1e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Low-skill Laborers']: 6.8e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Managers']: 8.1e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Medicine staff']: 6.4e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Private service staff']: 6.8e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Realty agents']: 6.3e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Sales staff']: 8.1e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Secretaries']: 7.9e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Security staff']: 7.3e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Waiters/barmen staff']: 7.9e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:missing']: 7.5e-05 secs

INFO [TRANSFORM] ['CODE_GENDER_asD:F']: 0.000136 secs

INFO [TRANSFORM] ['CODE_GENDER_asD:M']: 6.5e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR_asD:N']: 0.00014 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR_asD:Y']: 0.002041 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY_asD:N']: 0.00011 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY_asD:Y']: 8.9e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Academic degree']: 7.4e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Higher education']: 0.00011 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Incomplete higher']: 6.1e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Lower secondary']: 6e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE_asD:Secondary / secondary special']: 7.1e-05 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS_asD:Civil marriage']: 6.9e-05 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS_asD:Married']: 7.8e-05 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS_asD:Separated']: 8.1e-05 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS_asD:Single / not married']: 7.1e-05 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS_asD:Widow']: 8.6e-05 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:Co-op apartment']: 6.5e-05 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:House / apartment']: 6.6e-05 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:Municipal apartment']: 9.5e-05 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:Office apartment']: 6.9e-05 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:Rented apartment']: 6.9e-05 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE_asD:With parents']: 6.8e-05 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE_asD:Commercial associate']: 6.7e-05 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE_asD:Pensioner']: 9.7e-05 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE_asD:State servant']: 6.7e-05 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE_asD:Student']: 6.7e-05 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE_asD:Working']: 8.8e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Accountants']: 0.000143 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Cleaning staff']: 0.000516 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Cooking staff']: 7.5e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Core staff']: 7.1e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Drivers']: 6.6e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:HR staff']: 8.1e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:High skill tech staff']: 0.000108 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:IT staff']: 7.5e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Laborers']: 7.9e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Low-skill Laborers']: 8e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Managers']: 7.3e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Medicine staff']: 8.8e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Private service staff']: 9.5e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Realty agents']: 9e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Sales staff']: 6.8e-05 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Secretaries']: 0.000125 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Security staff']: 0.000509 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:Waiters/barmen staff']: 0.000311 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE_asD:missing']: 0.000486 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 10.87 s

INFO Saving var_desc...

INFO Saving var_cross...

INFO Saving var_unique...

INFO Saving var_summary...

WARNING Empty var_summary !

INFO Saving train_stable_summary...

WARNING Empty train_var_stable_summary !

INFO Saving test_stable_summary...

WARNING Empty test_var_stable_summary !

INFO Saving train_var_stable_iv_ks...

INFO Saving train_var_stable_psi...

INFO Saving test_var_stable_iv_ks...

INFO Saving test_var_stable_psi...

INFO Saving var_stable_cross_psi...

INFO Saving var_detail...

INFO Saving var_draft...

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 46...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 46...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 46...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 18.14 s

INFO Total: 25.35 s

In [23]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/v7-lgb/v7-lgb.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="lightgbm.sklearn.LGBMClassifier",

    convert_score=False,

    customized_parameter={

        "n_estimators": 200  #  默认100,尝试增加迭代次数

    }

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_stepwise to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_corr_filter to False !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v7-lgb/Data_v7-lgb.xlsx exists !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 18...

INFO Selected: 16...

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'CNT_FAM_MEMBERS', 'CODE_GENDER', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_PHONE', 'FLAG_WORK_PHONE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE', 'OCCUPATION_TYPE'] !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 200, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000132 secs

INFO [FIT_TRANSFORM] ['Age']: 7.6e-05 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 7e-05 secs

INFO [FIT_TRANSFORM] ['CNT_FAM_MEMBERS']: 8.9e-05 secs

INFO [FIT_TRANSFORM] ['CODE_GENDER']: 0.018599 secs

INFO [FIT_TRANSFORM] ['DAYS_BIRTH']: 0.00015 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 7.6e-05 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR']: 0.019438 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY']: 0.021 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.000149 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 6.1e-05 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.020115 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS']: 0.019289 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE']: 0.019384 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE']: 0.020671 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE']: 0.017788 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000141 secs

INFO [TRANSFORM] ['Age']: 8.6e-05 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.001894 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.00012 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.011295 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000141 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 8.5e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.011489 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.012979 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000179 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 8.6e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.012382 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.012682 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.011881 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.011926 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.013818 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.00017 secs

INFO [TRANSFORM] ['Age']: 0.000139 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 6.6e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 7.1e-05 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.004909 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000147 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 6.8e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.005004 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.005092 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000104 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 8.1e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.00536 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.00716 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.006344 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.005417 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.006381 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 11.14 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 200, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 200, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 200, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 18.76 s

INFO Total: 18.81 s

In [24]:
print(at.mt.Api.get_model_template())


        def run_logisticregression(train_data, train_response, train_all, test_all, kwargs):

            from sklearn.linear_model import LogisticRegression



            params = {}



            model_obj = template_fit_model(

                LogisticRegression, params, train_data, train_response, kwargs)





            train_p = template_use_model(model_obj, train_all, kwargs)

            test_p = template_use_model(model_obj, test_all, kwargs)



            kwargs["model_obj"] = model_obj

            return train_p, test_p, kwargs



In [25]:
def run_torch_net(train_data, train_response, train_all, test_all, kwargs):

    # 当 params = {} 时会自动使用 customized_parameter 来调参

    params = {}



    # not_discrete_cols = df_train.dtypes[df_train.dtypes != object].index.tolist()

    # num_variable = len(set(not_discrete_cols) - set(["ID", "target", "weight"]))

    # 10

    # TO DO 测试一下编译之后能不能移到后面导入

    import numpy as np

    import torch

    import torch.nn.functional as F

    from skorch import NeuralNetClassifier



    class Classifier(torch.nn.Module):

        def __init__(self):

            super(Classifier, self).__init__()

            var_num = len(train_data.columns)

            self.first_layer = torch.nn.Linear(var_num, var_num * 2)

            self.second_layer = torch.nn.Linear(var_num * 2, var_num * 4)

            self.final_layer = torch.nn.Linear(var_num * 4, 2)



        def forward(self, x_batch):

            X = self.first_layer(x_batch)

            # X = F.relu(X)

            X = torch.sigmoid(X)



            X = self.second_layer(X)

            X = torch.sigmoid(X)

            # X = F.relu(X)

            X = F.dropout(X, 0.15)



            X = self.final_layer(X)

            # X = F.relu(X)

            X = torch.sigmoid(X)

            return F.softmax(X, dim=1)



    net = NeuralNetClassifier(

        module=Classifier,

        criterion=torch.nn.CrossEntropyLoss,

        optimizer=torch.optim.Adam,

        # train_split=skorch.dataset.CVSplit(cv=5, stratified=True),

        # verbose=0,

        **params

    )

    # 使用模型函数fit拟合数据来训练模型

    net.fit(

        train_data.values.astype(np.float32),

        train_response.values.astype(np.int64)

    )

    # 通过查看 net.classes_ 来确认 p1的index的位置

    train_p = net.predict_proba(train_all.values.astype(np.float32))[:, 1]

    if test_all is not None:

        test_p = net.predict_proba(test_all.values.astype(np.float32))[:, 1]

    else:

        test_p = None



    # 将模型对象缓存

    kwargs["model_obj"] = net

    return train_p, test_p, kwargs

In [26]:
not_discrete_cols = df_train.dtypes[df_train.dtypes != object].index.tolist()

at.Analysis.model_flow(

    df_train, "./模型分析demo/v8-torch/v8-torch.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    model_func_definition=run_torch_net,

    customized_variables=not_discrete_cols,

    customized_parameter={

        "max_epochs": 10,

        "lr": 0.1,

    },

    precision=30,

)

WARNING Find that recover_from_json is None and customized_variables is not empty, setting filter_variable to False !

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting nan_mode to min !

WARNING Find that filter_variable is False, setting zero_imp_filter to False !

WARNING Find that filter_variable is False, setting enable_stepwise to False !

WARNING Find that filter_variable is False, setting enable_corr_filter to False !

WARNING Find that filter_variable is False, setting limit_var_num to inf !

WARNING Find that is_stats_model is False and predict_proba not in optional.model, setting convert_score to False !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v8-torch/Data_v8-torch.xlsx exists !

INFO Model variables: ['CNT_CHILDREN', 'AMT_INCOME_TOTAL', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_MOBIL', 'FLAG_WORK_PHONE', 'FLAG_PHONE', 'FLAG_EMAIL', 'CNT_FAM_MEMBERS', 'Age'] !

  epoch    train_loss    valid_acc    valid_loss     dur

-------  ------------  -----------  ------------  ------

      1        0.4991       0.9810        0.4973  0.2400

      2        0.4972       0.9810        0.4973  0.2392

      3        0.4972       0.9810        0.4973  0.2489

      4        0.4972       0.9810        0.4973  0.2615

      5        0.4972       0.9810        0.4973  0.2437

      6        0.4972       0.9810        0.4973  0.2531

      7        0.4972       0.9810        0.4973  0.2514

      8        0.4972       0.9810        0.4973  0.2702

      9        0.4972       0.9810        0.4973  0.2569

     10        0.4972       0.9810        0.4973  0.2744

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 13.16 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

  epoch    train_loss    valid_acc    valid_loss     dur

-------  ------------  -----------  ------------  ------

      1        0.4989       0.9817        0.4970  0.1679

      2        0.4970       0.9817        0.4970  0.1797

      3        0.4970       0.9817        0.4970  0.1739

      4        0.4970       0.9817        0.4970  0.1720

      5        0.4970       0.9817        0.4970  0.1698

      6        0.4970       0.9817        0.4970  0.1675

      7        0.4970       0.9817        0.4970  0.1825

      8        0.4970       0.9817        0.4970  0.1662

      9        0.4970       0.9817        0.4970  0.1611

     10        0.4970       0.9817        0.4970  0.1635

INFO Saving train results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

  epoch    train_loss    valid_acc    valid_loss     dur

-------  ------------  -----------  ------------  ------

      1        0.4994       0.9802        0.4977  0.1714

      2        0.4977       0.9802        0.4977  0.1707

      3        0.4977       0.9802        0.4977  0.1800

      4        0.4977       0.9802        0.4977  0.1791

      5        0.4977       0.9802        0.4977  0.1775

      6        0.4977       0.9802        0.4977  0.1728

      7        0.4977       0.9802        0.4977  0.1806

      8        0.4977       0.9802        0.4977  0.1689

      9        0.4977       0.9802        0.4977  0.1694

     10        0.4977       0.9802        0.4977  0.1742

INFO Saving train results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

  epoch    train_loss    valid_acc    valid_loss     dur

-------  ------------  -----------  ------------  ------

      1        0.4998       0.9819        0.4969  0.1673

      2        0.4970       0.9819        0.4969  0.1665

      3        0.4970       0.9819        0.4969  0.1741

      4        0.4970       0.9819        0.4969  0.1767

      5        0.4970       0.9819        0.4969  0.1719

      6        0.4970       0.9819        0.4969  0.1734

      7        0.4970       0.9819        0.4969  0.1706

      8        0.4970       0.9819        0.4969  0.1721

      9        0.4970       0.9819        0.4969  0.1737

     10        0.4970       0.9819        0.4969  0.1817

INFO Saving train results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

ERROR Can't pickle local object 'run_torch_net.<locals>.Classifier'

INFO Saving model pmml...

ERROR

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 22.87 s

INFO Total: 22.92 s

In [27]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/v9-lgb/v9-lgb.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="lightgbm.sklearn.LGBMClassifier",

    convert_score=False,

    customized_parameter={

        "n_estimators": [10, 20, 30, 40, 50],

        "learning_rate": [0.05, 0.08, 0.10]

    }

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_stepwise to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_corr_filter to False !

WARNING Find that model_search_method not in (order, order-random), setting auto_search_loop to 1 !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v9-lgb/Data_v9-lgb.xlsx exists !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 18...

INFO Selected: 16...

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'CNT_FAM_MEMBERS', 'CODE_GENDER', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_PHONE', 'FLAG_WORK_PHONE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE', 'OCCUPATION_TYPE'] !

INFO Auto params cv...

INFO Auto search loop: 1...

INFO ALL params: {'n_estimators': 10, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 10, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 10, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 20, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 20, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 20, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 30, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 30, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 30, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 40, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 40, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 40, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 50, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 50, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 50, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv search graph...

INFO Drawing params_search_chart...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000874 secs

INFO [FIT_TRANSFORM] ['Age']: 7.5e-05 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 7.2e-05 secs

INFO [FIT_TRANSFORM] ['CNT_FAM_MEMBERS']: 6.7e-05 secs

INFO [FIT_TRANSFORM] ['CODE_GENDER']: 0.018694 secs

INFO [FIT_TRANSFORM] ['DAYS_BIRTH']: 0.000135 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 0.000109 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR']: 0.01979 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY']: 0.019664 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.000111 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 0.000101 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.019242 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS']: 0.019244 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE']: 0.019365 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE']: 0.019341 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE']: 0.017799 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000119 secs

INFO [TRANSFORM] ['Age']: 0.00012 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 8.9e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000109 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.011498 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000991 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.00014 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.011565 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.011643 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.001018 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 9.4e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.012664 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.012369 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.011765 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.012976 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.014279 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000125 secs

INFO [TRANSFORM] ['Age']: 0.00013 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 8.5e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 7.5e-05 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.005169 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000105 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 7.4e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.004997 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.005075 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 9.8e-05 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 7.7e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.005358 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.005783 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.00504 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.00526 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.006445 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 10.19 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 46.02 s

INFO Total: 46.07 s

In [28]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/v10-lgb/v10-lgb.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="lightgbm.sklearn.LGBMClassifier",

    convert_score=False,

    customized_parameter={

        "n_estimators": [10, 20, 30, 40, 50],

        "learning_rate": [0.05, 0.08, 0.10]

    },

    model_search_target={"binary": "ks"},

    model_search_params={"binary": ["max", -1]},

    sample_weight_name="weight",

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_stepwise to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_corr_filter to False !

WARNING Find that model_search_method not in (order, order-random), setting auto_search_loop to 1 !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v10-lgb/Data_v10-lgb.xlsx exists !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 18...

INFO Selected: 16...

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'CNT_FAM_MEMBERS', 'CODE_GENDER', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_EMAIL', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_PHONE', 'FLAG_WORK_PHONE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'OCCUPATION_TYPE'] !

INFO Auto params cv...

INFO Auto search loop: 1...

INFO ALL params: {'n_estimators': 10, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 10, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 10, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 10, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 20, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 20, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 20, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 30, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 30, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 30, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 40, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 40, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 40, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 50, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 50, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 50, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv search graph...

INFO Drawing params_search_chart...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000201 secs

INFO [FIT_TRANSFORM] ['Age']: 7.3e-05 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 6.2e-05 secs

INFO [FIT_TRANSFORM] ['CNT_FAM_MEMBERS']: 9.3e-05 secs

INFO [FIT_TRANSFORM] ['CODE_GENDER']: 0.019595 secs

INFO [FIT_TRANSFORM] ['DAYS_BIRTH']: 0.000159 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 7e-05 secs

INFO [FIT_TRANSFORM] ['FLAG_EMAIL']: 0.000142 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR']: 0.020268 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY']: 0.022323 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.000166 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 0.000127 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.018786 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS']: 0.019112 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE']: 0.021237 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE']: 0.021535 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000129 secs

INFO [TRANSFORM] ['Age']: 0.000149 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000137 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000113 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.01171 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.001024 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.00012 secs

INFO [TRANSFORM] ['FLAG_EMAIL']: 9.8e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.011761 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.012816 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000217 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000146 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.014497 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.014447 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.012382 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.015224 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000141 secs

INFO [TRANSFORM] ['Age']: 0.000141 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.002131 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.00027 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.005306 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000133 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 8.1e-05 secs

INFO [TRANSFORM] ['FLAG_EMAIL']: 0.000244 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.005656 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.005099 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000133 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000154 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.008329 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.005936 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.006043 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.007842 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 11.38 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 50, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': array([1., 1., 1., ..., 1., 1., 1.]), 'feature_name': 'auto', 'categorical_feature': [4, 8, 9, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 51.62 s

INFO Total: 51.67 s

In [29]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/v11-lgb/v11-lgb.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="lightgbm.sklearn.LGBMClassifier",

    convert_score=False,

    customized_parameter={

        "n_estimators": list(range(5, 200, 10)),

        "learning_rate": [i/100 for i in range(5, 15, 1)],

    }

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_stepwise to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_corr_filter to False !

WARNING Find that model_search_method not in (order, order-random), setting auto_search_loop to 1 !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v11-lgb/Data_v11-lgb.xlsx exists !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 18...

INFO Selected: 16...

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'CNT_FAM_MEMBERS', 'CODE_GENDER', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_PHONE', 'FLAG_WORK_PHONE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE', 'OCCUPATION_TYPE'] !

INFO Auto params cv...

INFO Auto search loop: 1...

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.06}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.07}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.09}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.11}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.12}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.13}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.14}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.06}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.07}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.09}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.11}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.12}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.13}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.14}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.06}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.07}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.09}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.11}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.12}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.13}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.14}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.06}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.07}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.09}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.11}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.12}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.13}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.14}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.06}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.07}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.07, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.08}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.08, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.09}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.09, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.1}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.1, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.11}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.11, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.12}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.12, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.13}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.13, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.14}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.14, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 55, 'learning_rate': 0.05}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.05, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 55, 'learning_rate': 0.06}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv search graph...

INFO Drawing params_search_chart...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000122 secs

INFO [FIT_TRANSFORM] ['Age']: 6.3e-05 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 6.1e-05 secs

INFO [FIT_TRANSFORM] ['CNT_FAM_MEMBERS']: 6.4e-05 secs

INFO [FIT_TRANSFORM] ['CODE_GENDER']: 0.018901 secs

INFO [FIT_TRANSFORM] ['DAYS_BIRTH']: 0.001318 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 0.000194 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR']: 0.019772 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY']: 0.021782 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.001121 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 6.6e-05 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.021156 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS']: 0.020246 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE']: 0.020276 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE']: 0.02078 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE']: 0.018974 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000142 secs

INFO [TRANSFORM] ['Age']: 0.000143 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.001299 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000354 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.011745 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000188 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.000171 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.011451 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.012903 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.001422 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 7.6e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.012988 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.013955 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.011453 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.012127 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.013028 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.00012 secs

INFO [TRANSFORM] ['Age']: 9.4e-05 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 6e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 6.4e-05 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.004913 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 9.5e-05 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.000159 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.00555 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.006072 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000131 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 6.4e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.005105 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.006503 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.005266 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.005181 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.00557 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 10.06 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.06, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 118.91 s

INFO Total: 118.96 s

In [30]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/v12-lgb/v12-lgb.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="lightgbm.sklearn.LGBMClassifier",

    convert_score=False,

    customized_parameter={

        "n_estimators": list(range(5, 200, 10)),

        "learning_rate": [i/100 for i in range(5, 15, 1)],

        "max_depth": [3, 4, 5, -1],

        "min_child_samples": list(range(20, 55, 5)),

        "min_child_weight": [i/1000 for i in range(1, 11, 1)],

    },

    model_search_method="order",

    model_search_params={"binary": ["max", -1]}

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_stepwise to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_corr_filter to False !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v12-lgb/Data_v12-lgb.xlsx exists !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 18...

INFO Selected: 16...

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'CNT_FAM_MEMBERS', 'CODE_GENDER', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_PHONE', 'FLAG_WORK_PHONE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE', 'OCCUPATION_TYPE'] !

INFO Auto params cv...

INFO Auto search loop: 1...

/tmp/ipykernel_45055/185663500.py:1: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.

  at.Analysis.model_flow(

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 55, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 65, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 65, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 65, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 65, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 75, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 85, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 85, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 85, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 85, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 95, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 95, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 95, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 95, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 105, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 105, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 105, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 105, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 115, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 115, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 115, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 115, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 125, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 125, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 125, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 125, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 135, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 145, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 145, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 145, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 145, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 155, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 165, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 165, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 165, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 165, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 175, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 175, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 175, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 175, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 185, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 185, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 185, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 185, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.05, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Auto search n_estimators...

INFO roc_auc_score; n_estimators: 5; max: 0.7054496069706926

INFO roc_auc_score; n_estimators: 15; max: 0.7401149364191927

INFO roc_auc_score; n_estimators: 25; max: 0.7613715997801144

INFO roc_auc_score; n_estimators: 35; max: 0.7750284298736776

INFO roc_auc_score; n_estimators: 45; max: 0.7913186658964141

INFO roc_auc_score; n_estimators: 55; max: 0.7995883904471894

INFO roc_auc_score; n_estimators: 65; max: 0.8054500265998243

INFO roc_auc_score; n_estimators: 75; max: 0.8126983039056748

INFO roc_auc_score; n_estimators: 85; max: 0.8211813399317682

INFO roc_auc_score; n_estimators: 95; max: 0.8308033193596833

INFO roc_auc_score; n_estimators: 105; max: 0.8414131757019813

INFO roc_auc_score; n_estimators: 115; max: 0.8454930199356475

INFO roc_auc_score; n_estimators: 125; max: 0.8491806274947535

INFO roc_auc_score; n_estimators: 135; max: 0.8514783301185079

INFO roc_auc_score; n_estimators: 145; max: 0.8554705184890926

INFO roc_auc_score; n_estimators: 155; max: 0.860208364514109

INFO roc_auc_score; n_estimators: 165; max: 0.865420974276268

INFO roc_auc_score; n_estimators: 175; max: 0.8676911678791618

INFO roc_auc_score; n_estimators: 185; max: 0.8714691122652467

INFO roc_auc_score; n_estimators: 195; max: 0.87655396826951

INFO Auto select n_estimators: 195

/tmp/ipykernel_45055/185663500.py:1: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.

  at.Analysis.model_flow(

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.06, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.06, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.06, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.06, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.07, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.07, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.07, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.07, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.08, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.08, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.08, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.08, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.09, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.09, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.09, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.09, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.12, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.12, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.12, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.12, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.13, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.13, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.13, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.13, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Auto search learning_rate...

INFO roc_auc_score; learning_rate: 0.05; max: 0.87655396826951

INFO roc_auc_score; learning_rate: 0.06; max: 0.8872174438897569

INFO roc_auc_score; learning_rate: 0.07; max: 0.9013805558466214

INFO roc_auc_score; learning_rate: 0.08; max: 0.9147177928858042

INFO roc_auc_score; learning_rate: 0.09; max: 0.92813158365128

INFO roc_auc_score; learning_rate: 0.1; max: 0.9366350877409254

INFO roc_auc_score; learning_rate: 0.11; max: 0.9404524189621485

INFO roc_auc_score; learning_rate: 0.12; max: 0.9494214091556284

INFO roc_auc_score; learning_rate: 0.13; max: 0.9545355925517292

INFO roc_auc_score; learning_rate: 0.14; max: 0.9621562016531167

INFO Auto select learning_rate: 0.14

/tmp/ipykernel_45055/185663500.py:1: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.

  at.Analysis.model_flow(

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 4, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 4, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 4, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 4, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Auto search max_depth...

INFO roc_auc_score; max_depth: 3; max: 0.9621562016531167

INFO roc_auc_score; max_depth: 4; max: 0.9916023890679799

INFO roc_auc_score; max_depth: 5; max: 0.9950484162254453

INFO roc_auc_score; max_depth: -1; max: 0.9968954438067635

INFO Auto select max_depth: -1

/tmp/ipykernel_45055/185663500.py:1: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.

  at.Analysis.model_flow(

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 25, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 25, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 25, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 25, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 30, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 30, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 30, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 30, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 40, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 40, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 40, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 40, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 45, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 45, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 45, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 45, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 50, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 50, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 50, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 50, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Auto search min_child_samples...

INFO roc_auc_score; min_child_samples: 20; max: 0.9968954438067635

INFO roc_auc_score; min_child_samples: 25; max: 0.996816413653613

INFO roc_auc_score; min_child_samples: 30; max: 0.996842990165292

INFO roc_auc_score; min_child_samples: 35; max: 0.9967404141553029

INFO roc_auc_score; min_child_samples: 40; max: 0.9968637384945852

INFO roc_auc_score; min_child_samples: 45; max: 0.9968446220563599

INFO roc_auc_score; min_child_samples: 50; max: 0.9968168799082038

INFO Auto select min_child_samples: 20

/tmp/ipykernel_45055/185663500.py:1: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.

  at.Analysis.model_flow(

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.002}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.003}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.004}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.005}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.006}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.008}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.009}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.01}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Auto search min_child_weight...

INFO roc_auc_score; min_child_weight: 0.001; max: 0.9968954438067635

INFO roc_auc_score; min_child_weight: 0.002; max: 0.9968954438067635

INFO roc_auc_score; min_child_weight: 0.003; max: 0.9968954438067635

INFO roc_auc_score; min_child_weight: 0.004; max: 0.9968954438067635

INFO roc_auc_score; min_child_weight: 0.005; max: 0.9968954438067635

INFO roc_auc_score; min_child_weight: 0.006; max: 0.9968954438067635

INFO roc_auc_score; min_child_weight: 0.007; max: 0.9968954438067635

INFO roc_auc_score; min_child_weight: 0.008; max: 0.9968954438067635

INFO roc_auc_score; min_child_weight: 0.009; max: 0.9968954438067635

INFO roc_auc_score; min_child_weight: 0.01; max: 0.9968954438067635

WARNING Useless min_child_weight: [0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01]

WARNING Reset min_child_weight to 0.001

INFO Auto search loop: 2...

INFO ALL params: {'n_estimators': 5, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 5, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 25, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 25, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 45, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 45, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 55, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 55, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 65, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 65, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 65, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 65, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 75, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 85, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 85, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 85, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 85, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 95, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 95, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 95, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 95, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 105, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 105, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 105, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 105, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 115, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 115, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 115, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 115, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 125, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 125, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 125, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 125, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 135, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 145, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 145, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 145, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 145, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 155, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 165, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 165, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 165, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 165, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 175, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 175, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 175, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 175, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 185, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 185, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 185, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 185, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Auto search n_estimators...

INFO roc_auc_score; n_estimators: 5; max: 0.8490571317623999

INFO roc_auc_score; n_estimators: 15; max: 0.9495035190966745

INFO roc_auc_score; n_estimators: 25; max: 0.9743177657653216

INFO roc_auc_score; n_estimators: 35; max: 0.9876382374151714

INFO roc_auc_score; n_estimators: 45; max: 0.9917485931249577

INFO roc_auc_score; n_estimators: 55; max: 0.9934564438883376

INFO roc_auc_score; n_estimators: 65; max: 0.9941633022885988

INFO roc_auc_score; n_estimators: 75; max: 0.9949668982553219

INFO roc_auc_score; n_estimators: 85; max: 0.9954548336846563

INFO roc_auc_score; n_estimators: 95; max: 0.9958863523084964

INFO roc_auc_score; n_estimators: 105; max: 0.9961201789858123

INFO roc_auc_score; n_estimators: 115; max: 0.9963097114769967

INFO roc_auc_score; n_estimators: 125; max: 0.9964919004583748

INFO roc_auc_score; n_estimators: 135; max: 0.9966135929065891

INFO roc_auc_score; n_estimators: 145; max: 0.9966905249140809

INFO roc_auc_score; n_estimators: 155; max: 0.9967814445592985

INFO roc_auc_score; n_estimators: 165; max: 0.9968304012913387

INFO roc_auc_score; n_estimators: 175; max: 0.9968635053672896

INFO roc_auc_score; n_estimators: 185; max: 0.9968777261323108

INFO roc_auc_score; n_estimators: 195; max: 0.9968954438067635

INFO Auto select n_estimators: 195

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.05, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.05, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.05, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.05, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.06, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.06, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.06, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.06, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.07, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.07, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.07, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.07, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.08, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.08, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.08, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.08, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.09, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.09, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.09, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.09, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.1, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.1, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.1, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.1, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.11, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.11, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.11, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.11, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.12, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.12, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.12, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.12, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 195, 'learning_rate': 0.13, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.13, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.13, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.13, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Auto search learning_rate...

INFO roc_auc_score; learning_rate: 0.05; max: 0.9948265213666259

INFO roc_auc_score; learning_rate: 0.06; max: 0.9953066812884106

INFO roc_auc_score; learning_rate: 0.07; max: 0.9956967032536644

INFO roc_auc_score; learning_rate: 0.08; max: 0.9960641118712615

INFO roc_auc_score; learning_rate: 0.09; max: 0.9962978219849297

INFO roc_auc_score; learning_rate: 0.1; max: 0.996545752863619

INFO roc_auc_score; learning_rate: 0.11; max: 0.9967259602629862

INFO roc_auc_score; learning_rate: 0.12; max: 0.9966788685493094

INFO roc_auc_score; learning_rate: 0.13; max: 0.9967641931394368

INFO roc_auc_score; learning_rate: 0.14; max: 0.9968954438067635

INFO Auto select learning_rate: 0.14

INFO Auto search max_depth...

INFO roc_auc_score; max_depth: 3; max: 0.9621562016531167

INFO roc_auc_score; max_depth: 4; max: 0.9916023890679799

INFO roc_auc_score; max_depth: 5; max: 0.9950484162254453

INFO roc_auc_score; max_depth: -1; max: 0.9968954438067635

INFO Auto select max_depth: -1

INFO Drawing cv search graph...

INFO Drawing params_search_chart...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000118 secs

INFO [FIT_TRANSFORM] ['Age']: 7.3e-05 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 7.6e-05 secs

INFO [FIT_TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000106 secs

INFO [FIT_TRANSFORM] ['CODE_GENDER']: 0.021126 secs

INFO [FIT_TRANSFORM] ['DAYS_BIRTH']: 0.000168 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 0.000137 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR']: 0.020402 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY']: 0.019935 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.000189 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 7.1e-05 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.026569 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS']: 0.027534 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE']: 0.021775 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE']: 0.022049 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE']: 0.020273 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000186 secs

INFO [TRANSFORM] ['Age']: 0.000178 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 9.7e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000112 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.011546 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000126 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 8e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.011677 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.011106 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.00014 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000278 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.013192 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.012107 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.011589 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.012411 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.013504 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000135 secs

INFO [TRANSFORM] ['Age']: 8.5e-05 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 6.2e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000247 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.005391 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 9e-05 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.000153 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.005486 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.004894 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000325 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000271 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.005318 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.005085 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.005356 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.005416 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.005934 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 10.97 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 195, 'learning_rate': 0.14, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 209.20 s

INFO Total: 209.26 s

In [31]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/v13-lgb/v13-lgb.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="lightgbm.sklearn.LGBMClassifier",

    convert_score=False,

    customized_parameter={

        "n_estimators": list(range(5, 200, 10)),

        "learning_rate": [i/100 for i in range(5, 15, 1)],

        "max_depth": [3, 4, 5, -1],

        "min_child_samples": list(range(20, 55, 5)),

        "min_child_weight": [i/1000 for i in range(1, 11, 1)],

    },

    model_search_method="random",

    model_search_params={"binary": ["max", -1]},

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_stepwise to False !

WARNING Find that allow_nan is True or allow_discrete is True, setting enable_corr_filter to False !

WARNING Find that model_search_method not in (order, order-random), setting auto_search_loop to 1 !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v13-lgb/Data_v13-lgb.xlsx exists !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 9, 10, 13, 14, 15, 16, 17]}

INFO Using variables: 18...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 18...

INFO Selected: 16...

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'CNT_FAM_MEMBERS', 'CODE_GENDER', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_PHONE', 'FLAG_WORK_PHONE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE', 'OCCUPATION_TYPE'] !

INFO Auto params cv...

INFO Auto search loop: 1...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.112, 'max_depth': 2, 'min_child_samples': 25, 'min_child_weight': 0.01}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.112, 'max_depth': 2, 'min_child_samples': 25, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.112, 'max_depth': 2, 'min_child_samples': 25, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.112, 'max_depth': 2, 'min_child_samples': 25, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 107, 'learning_rate': 0.109, 'max_depth': 5, 'min_child_samples': 30, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 107, 'learning_rate': 0.109, 'max_depth': 5, 'min_child_samples': 30, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 107, 'learning_rate': 0.109, 'max_depth': 5, 'min_child_samples': 30, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 107, 'learning_rate': 0.109, 'max_depth': 5, 'min_child_samples': 30, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 58, 'learning_rate': 0.089, 'max_depth': 5, 'min_child_samples': 29, 'min_child_weight': 0.008}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 58, 'learning_rate': 0.089, 'max_depth': 5, 'min_child_samples': 29, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 58, 'learning_rate': 0.089, 'max_depth': 5, 'min_child_samples': 29, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 58, 'learning_rate': 0.089, 'max_depth': 5, 'min_child_samples': 29, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 41, 'learning_rate': 0.125, 'max_depth': 3, 'min_child_samples': 45, 'min_child_weight': 0.003}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 41, 'learning_rate': 0.125, 'max_depth': 3, 'min_child_samples': 45, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 41, 'learning_rate': 0.125, 'max_depth': 3, 'min_child_samples': 45, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 41, 'learning_rate': 0.125, 'max_depth': 3, 'min_child_samples': 45, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 85, 'learning_rate': 0.058, 'max_depth': 5, 'min_child_samples': 50, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 85, 'learning_rate': 0.058, 'max_depth': 5, 'min_child_samples': 50, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 85, 'learning_rate': 0.058, 'max_depth': 5, 'min_child_samples': 50, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 85, 'learning_rate': 0.058, 'max_depth': 5, 'min_child_samples': 50, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 75, 'learning_rate': 0.13, 'max_depth': -1, 'min_child_samples': 23, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.13, 'max_depth': -1, 'min_child_samples': 23, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.13, 'max_depth': -1, 'min_child_samples': 23, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.13, 'max_depth': -1, 'min_child_samples': 23, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 144, 'learning_rate': 0.067, 'max_depth': 2, 'min_child_samples': 22, 'min_child_weight': 0.005}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 144, 'learning_rate': 0.067, 'max_depth': 2, 'min_child_samples': 22, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 144, 'learning_rate': 0.067, 'max_depth': 2, 'min_child_samples': 22, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 144, 'learning_rate': 0.067, 'max_depth': 2, 'min_child_samples': 22, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 120, 'learning_rate': 0.084, 'max_depth': 1, 'min_child_samples': 39, 'min_child_weight': 0.005}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 120, 'learning_rate': 0.084, 'max_depth': 1, 'min_child_samples': 39, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 120, 'learning_rate': 0.084, 'max_depth': 1, 'min_child_samples': 39, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 120, 'learning_rate': 0.084, 'max_depth': 1, 'min_child_samples': 39, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 135, 'learning_rate': 0.075, 'max_depth': 2, 'min_child_samples': 47, 'min_child_weight': 0.002}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.075, 'max_depth': 2, 'min_child_samples': 47, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.075, 'max_depth': 2, 'min_child_samples': 47, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.075, 'max_depth': 2, 'min_child_samples': 47, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 66, 'learning_rate': 0.113, 'max_depth': 5, 'min_child_samples': 40, 'min_child_weight': 0.008}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 66, 'learning_rate': 0.113, 'max_depth': 5, 'min_child_samples': 40, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 66, 'learning_rate': 0.113, 'max_depth': 5, 'min_child_samples': 40, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 66, 'learning_rate': 0.113, 'max_depth': 5, 'min_child_samples': 40, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 31, 'learning_rate': 0.101, 'max_depth': 1, 'min_child_samples': 49, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 31, 'learning_rate': 0.101, 'max_depth': 1, 'min_child_samples': 49, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 31, 'learning_rate': 0.101, 'max_depth': 1, 'min_child_samples': 49, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 31, 'learning_rate': 0.101, 'max_depth': 1, 'min_child_samples': 49, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 98, 'learning_rate': 0.111, 'max_depth': -1, 'min_child_samples': 37, 'min_child_weight': 0.006}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 98, 'learning_rate': 0.111, 'max_depth': -1, 'min_child_samples': 37, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 98, 'learning_rate': 0.111, 'max_depth': -1, 'min_child_samples': 37, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 98, 'learning_rate': 0.111, 'max_depth': -1, 'min_child_samples': 37, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 187, 'learning_rate': 0.13, 'max_depth': 1, 'min_child_samples': 27, 'min_child_weight': 0.01}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 187, 'learning_rate': 0.13, 'max_depth': 1, 'min_child_samples': 27, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 187, 'learning_rate': 0.13, 'max_depth': 1, 'min_child_samples': 27, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 187, 'learning_rate': 0.13, 'max_depth': 1, 'min_child_samples': 27, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 9, 'learning_rate': 0.135, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.008}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 9, 'learning_rate': 0.135, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 9, 'learning_rate': 0.135, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 9, 'learning_rate': 0.135, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 135, 'learning_rate': 0.064, 'max_depth': 3, 'min_child_samples': 39, 'min_child_weight': 0.008}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.064, 'max_depth': 3, 'min_child_samples': 39, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.064, 'max_depth': 3, 'min_child_samples': 39, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 135, 'learning_rate': 0.064, 'max_depth': 3, 'min_child_samples': 39, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 115, 'learning_rate': 0.056, 'max_depth': 1, 'min_child_samples': 33, 'min_child_weight': 0.009}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 115, 'learning_rate': 0.056, 'max_depth': 1, 'min_child_samples': 33, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 115, 'learning_rate': 0.056, 'max_depth': 1, 'min_child_samples': 33, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 115, 'learning_rate': 0.056, 'max_depth': 1, 'min_child_samples': 33, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 19, 'learning_rate': 0.14, 'max_depth': 0, 'min_child_samples': 31, 'min_child_weight': 0.006}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 19, 'learning_rate': 0.14, 'max_depth': 0, 'min_child_samples': 31, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 19, 'learning_rate': 0.14, 'max_depth': 0, 'min_child_samples': 31, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 19, 'learning_rate': 0.14, 'max_depth': 0, 'min_child_samples': 31, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 155, 'learning_rate': 0.134, 'max_depth': 0, 'min_child_samples': 26, 'min_child_weight': 0.004}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.134, 'max_depth': 0, 'min_child_samples': 26, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.134, 'max_depth': 0, 'min_child_samples': 26, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.134, 'max_depth': 0, 'min_child_samples': 26, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 167, 'learning_rate': 0.134, 'max_depth': 4, 'min_child_samples': 41, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 167, 'learning_rate': 0.134, 'max_depth': 4, 'min_child_samples': 41, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 167, 'learning_rate': 0.134, 'max_depth': 4, 'min_child_samples': 41, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 167, 'learning_rate': 0.134, 'max_depth': 4, 'min_child_samples': 41, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 72, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 27, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 72, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 27, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 72, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 27, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 72, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 27, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 155, 'learning_rate': 0.085, 'max_depth': 2, 'min_child_samples': 29, 'min_child_weight': 0.004}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.085, 'max_depth': 2, 'min_child_samples': 29, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.085, 'max_depth': 2, 'min_child_samples': 29, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 155, 'learning_rate': 0.085, 'max_depth': 2, 'min_child_samples': 29, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 176, 'learning_rate': 0.112, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.002}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 176, 'learning_rate': 0.112, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 176, 'learning_rate': 0.112, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 176, 'learning_rate': 0.112, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 158, 'learning_rate': 0.122, 'max_depth': 0, 'min_child_samples': 41, 'min_child_weight': 0.006}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 158, 'learning_rate': 0.122, 'max_depth': 0, 'min_child_samples': 41, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 158, 'learning_rate': 0.122, 'max_depth': 0, 'min_child_samples': 41, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 158, 'learning_rate': 0.122, 'max_depth': 0, 'min_child_samples': 41, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 130, 'learning_rate': 0.058, 'max_depth': 4, 'min_child_samples': 29, 'min_child_weight': 0.009}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 130, 'learning_rate': 0.058, 'max_depth': 4, 'min_child_samples': 29, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 130, 'learning_rate': 0.058, 'max_depth': 4, 'min_child_samples': 29, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 130, 'learning_rate': 0.058, 'max_depth': 4, 'min_child_samples': 29, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 70, 'learning_rate': 0.063, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.009}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 70, 'learning_rate': 0.063, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 70, 'learning_rate': 0.063, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 70, 'learning_rate': 0.063, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 182, 'learning_rate': 0.114, 'max_depth': 0, 'min_child_samples': 28, 'min_child_weight': 0.005}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 182, 'learning_rate': 0.114, 'max_depth': 0, 'min_child_samples': 28, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 182, 'learning_rate': 0.114, 'max_depth': 0, 'min_child_samples': 28, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 182, 'learning_rate': 0.114, 'max_depth': 0, 'min_child_samples': 28, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 136, 'learning_rate': 0.099, 'max_depth': 5, 'min_child_samples': 35, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 136, 'learning_rate': 0.099, 'max_depth': 5, 'min_child_samples': 35, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 136, 'learning_rate': 0.099, 'max_depth': 5, 'min_child_samples': 35, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 136, 'learning_rate': 0.099, 'max_depth': 5, 'min_child_samples': 35, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 83, 'learning_rate': 0.064, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.004}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 83, 'learning_rate': 0.064, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 83, 'learning_rate': 0.064, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 83, 'learning_rate': 0.064, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 40, 'learning_rate': 0.067, 'max_depth': 2, 'min_child_samples': 29, 'min_child_weight': 0.008}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.067, 'max_depth': 2, 'min_child_samples': 29, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.067, 'max_depth': 2, 'min_child_samples': 29, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 40, 'learning_rate': 0.067, 'max_depth': 2, 'min_child_samples': 29, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 86, 'learning_rate': 0.095, 'max_depth': 1, 'min_child_samples': 46, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 86, 'learning_rate': 0.095, 'max_depth': 1, 'min_child_samples': 46, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 86, 'learning_rate': 0.095, 'max_depth': 1, 'min_child_samples': 46, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 86, 'learning_rate': 0.095, 'max_depth': 1, 'min_child_samples': 46, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 34, 'learning_rate': 0.124, 'max_depth': 0, 'min_child_samples': 37, 'min_child_weight': 0.01}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 34, 'learning_rate': 0.124, 'max_depth': 0, 'min_child_samples': 37, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 34, 'learning_rate': 0.124, 'max_depth': 0, 'min_child_samples': 37, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 34, 'learning_rate': 0.124, 'max_depth': 0, 'min_child_samples': 37, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 75, 'learning_rate': 0.105, 'max_depth': 4, 'min_child_samples': 20, 'min_child_weight': 0.002}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.105, 'max_depth': 4, 'min_child_samples': 20, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.105, 'max_depth': 4, 'min_child_samples': 20, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.105, 'max_depth': 4, 'min_child_samples': 20, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 102, 'learning_rate': 0.111, 'max_depth': 5, 'min_child_samples': 50, 'min_child_weight': 0.003}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 102, 'learning_rate': 0.111, 'max_depth': 5, 'min_child_samples': 50, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 102, 'learning_rate': 0.111, 'max_depth': 5, 'min_child_samples': 50, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 102, 'learning_rate': 0.111, 'max_depth': 5, 'min_child_samples': 50, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 20, 'learning_rate': 0.069, 'max_depth': 5, 'min_child_samples': 40, 'min_child_weight': 0.004}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.069, 'max_depth': 5, 'min_child_samples': 40, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.069, 'max_depth': 5, 'min_child_samples': 40, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 20, 'learning_rate': 0.069, 'max_depth': 5, 'min_child_samples': 40, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 117, 'learning_rate': 0.064, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.01}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 117, 'learning_rate': 0.064, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 117, 'learning_rate': 0.064, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 117, 'learning_rate': 0.064, 'max_depth': -1, 'min_child_samples': 46, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 121, 'learning_rate': 0.067, 'max_depth': 1, 'min_child_samples': 44, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 121, 'learning_rate': 0.067, 'max_depth': 1, 'min_child_samples': 44, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 121, 'learning_rate': 0.067, 'max_depth': 1, 'min_child_samples': 44, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 121, 'learning_rate': 0.067, 'max_depth': 1, 'min_child_samples': 44, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 123, 'learning_rate': 0.09, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.009}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 123, 'learning_rate': 0.09, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 123, 'learning_rate': 0.09, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 123, 'learning_rate': 0.09, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 93, 'learning_rate': 0.074, 'max_depth': 0, 'min_child_samples': 42, 'min_child_weight': 0.006}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 93, 'learning_rate': 0.074, 'max_depth': 0, 'min_child_samples': 42, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 93, 'learning_rate': 0.074, 'max_depth': 0, 'min_child_samples': 42, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 93, 'learning_rate': 0.074, 'max_depth': 0, 'min_child_samples': 42, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 52, 'learning_rate': 0.058, 'max_depth': 2, 'min_child_samples': 39, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 52, 'learning_rate': 0.058, 'max_depth': 2, 'min_child_samples': 39, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 52, 'learning_rate': 0.058, 'max_depth': 2, 'min_child_samples': 39, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 52, 'learning_rate': 0.058, 'max_depth': 2, 'min_child_samples': 39, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 44, 'learning_rate': 0.053, 'max_depth': 0, 'min_child_samples': 36, 'min_child_weight': 0.008}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 44, 'learning_rate': 0.053, 'max_depth': 0, 'min_child_samples': 36, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 44, 'learning_rate': 0.053, 'max_depth': 0, 'min_child_samples': 36, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 44, 'learning_rate': 0.053, 'max_depth': 0, 'min_child_samples': 36, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 34, 'learning_rate': 0.123, 'max_depth': 3, 'min_child_samples': 48, 'min_child_weight': 0.003}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 34, 'learning_rate': 0.123, 'max_depth': 3, 'min_child_samples': 48, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 34, 'learning_rate': 0.123, 'max_depth': 3, 'min_child_samples': 48, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 34, 'learning_rate': 0.123, 'max_depth': 3, 'min_child_samples': 48, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 57, 'learning_rate': 0.095, 'max_depth': 0, 'min_child_samples': 26, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 57, 'learning_rate': 0.095, 'max_depth': 0, 'min_child_samples': 26, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 57, 'learning_rate': 0.095, 'max_depth': 0, 'min_child_samples': 26, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 57, 'learning_rate': 0.095, 'max_depth': 0, 'min_child_samples': 26, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 13, 'learning_rate': 0.111, 'max_depth': 0, 'min_child_samples': 41, 'min_child_weight': 0.006}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 13, 'learning_rate': 0.111, 'max_depth': 0, 'min_child_samples': 41, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 13, 'learning_rate': 0.111, 'max_depth': 0, 'min_child_samples': 41, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 13, 'learning_rate': 0.111, 'max_depth': 0, 'min_child_samples': 41, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 186, 'learning_rate': 0.06, 'max_depth': 1, 'min_child_samples': 28, 'min_child_weight': 0.002}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 186, 'learning_rate': 0.06, 'max_depth': 1, 'min_child_samples': 28, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 186, 'learning_rate': 0.06, 'max_depth': 1, 'min_child_samples': 28, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 186, 'learning_rate': 0.06, 'max_depth': 1, 'min_child_samples': 28, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 9, 'learning_rate': 0.121, 'max_depth': 1, 'min_child_samples': 27, 'min_child_weight': 0.004}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 9, 'learning_rate': 0.121, 'max_depth': 1, 'min_child_samples': 27, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 9, 'learning_rate': 0.121, 'max_depth': 1, 'min_child_samples': 27, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 9, 'learning_rate': 0.121, 'max_depth': 1, 'min_child_samples': 27, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 29, 'learning_rate': 0.102, 'max_depth': 0, 'min_child_samples': 25, 'min_child_weight': 0.005}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 29, 'learning_rate': 0.102, 'max_depth': 0, 'min_child_samples': 25, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 29, 'learning_rate': 0.102, 'max_depth': 0, 'min_child_samples': 25, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 29, 'learning_rate': 0.102, 'max_depth': 0, 'min_child_samples': 25, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 29, 'learning_rate': 0.075, 'max_depth': -1, 'min_child_samples': 49, 'min_child_weight': 0.002}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 29, 'learning_rate': 0.075, 'max_depth': -1, 'min_child_samples': 49, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 29, 'learning_rate': 0.075, 'max_depth': -1, 'min_child_samples': 49, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 29, 'learning_rate': 0.075, 'max_depth': -1, 'min_child_samples': 49, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 30, 'learning_rate': 0.101, 'max_depth': 4, 'min_child_samples': 31, 'min_child_weight': 0.003}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.101, 'max_depth': 4, 'min_child_samples': 31, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.101, 'max_depth': 4, 'min_child_samples': 31, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 30, 'learning_rate': 0.101, 'max_depth': 4, 'min_child_samples': 31, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 149, 'learning_rate': 0.067, 'max_depth': 5, 'min_child_samples': 38, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 149, 'learning_rate': 0.067, 'max_depth': 5, 'min_child_samples': 38, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 149, 'learning_rate': 0.067, 'max_depth': 5, 'min_child_samples': 38, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 149, 'learning_rate': 0.067, 'max_depth': 5, 'min_child_samples': 38, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 58, 'learning_rate': 0.115, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.005}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 58, 'learning_rate': 0.115, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 58, 'learning_rate': 0.115, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 58, 'learning_rate': 0.115, 'max_depth': -1, 'min_child_samples': 35, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 82, 'learning_rate': 0.083, 'max_depth': -1, 'min_child_samples': 37, 'min_child_weight': 0.01}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 82, 'learning_rate': 0.083, 'max_depth': -1, 'min_child_samples': 37, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 82, 'learning_rate': 0.083, 'max_depth': -1, 'min_child_samples': 37, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 82, 'learning_rate': 0.083, 'max_depth': -1, 'min_child_samples': 37, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 184, 'learning_rate': 0.072, 'max_depth': 2, 'min_child_samples': 48, 'min_child_weight': 0.002}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 184, 'learning_rate': 0.072, 'max_depth': 2, 'min_child_samples': 48, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 184, 'learning_rate': 0.072, 'max_depth': 2, 'min_child_samples': 48, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 184, 'learning_rate': 0.072, 'max_depth': 2, 'min_child_samples': 48, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 23, 'learning_rate': 0.097, 'max_depth': 4, 'min_child_samples': 44, 'min_child_weight': 0.006}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 23, 'learning_rate': 0.097, 'max_depth': 4, 'min_child_samples': 44, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 23, 'learning_rate': 0.097, 'max_depth': 4, 'min_child_samples': 44, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 23, 'learning_rate': 0.097, 'max_depth': 4, 'min_child_samples': 44, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 118, 'learning_rate': 0.064, 'max_depth': 3, 'min_child_samples': 41, 'min_child_weight': 0.002}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 118, 'learning_rate': 0.064, 'max_depth': 3, 'min_child_samples': 41, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 118, 'learning_rate': 0.064, 'max_depth': 3, 'min_child_samples': 41, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 118, 'learning_rate': 0.064, 'max_depth': 3, 'min_child_samples': 41, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 31, 'learning_rate': 0.062, 'max_depth': 5, 'min_child_samples': 27, 'min_child_weight': 0.004}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 31, 'learning_rate': 0.062, 'max_depth': 5, 'min_child_samples': 27, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 31, 'learning_rate': 0.062, 'max_depth': 5, 'min_child_samples': 27, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 31, 'learning_rate': 0.062, 'max_depth': 5, 'min_child_samples': 27, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 9, 'learning_rate': 0.092, 'max_depth': 5, 'min_child_samples': 26, 'min_child_weight': 0.002}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 9, 'learning_rate': 0.092, 'max_depth': 5, 'min_child_samples': 26, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 9, 'learning_rate': 0.092, 'max_depth': 5, 'min_child_samples': 26, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 9, 'learning_rate': 0.092, 'max_depth': 5, 'min_child_samples': 26, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 51, 'learning_rate': 0.128, 'max_depth': 1, 'min_child_samples': 45, 'min_child_weight': 0.003}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 51, 'learning_rate': 0.128, 'max_depth': 1, 'min_child_samples': 45, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 51, 'learning_rate': 0.128, 'max_depth': 1, 'min_child_samples': 45, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 51, 'learning_rate': 0.128, 'max_depth': 1, 'min_child_samples': 45, 'min_child_weight': 0.003, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 145, 'learning_rate': 0.073, 'max_depth': 2, 'min_child_samples': 38, 'min_child_weight': 0.004}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 145, 'learning_rate': 0.073, 'max_depth': 2, 'min_child_samples': 38, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 145, 'learning_rate': 0.073, 'max_depth': 2, 'min_child_samples': 38, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 145, 'learning_rate': 0.073, 'max_depth': 2, 'min_child_samples': 38, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 110, 'learning_rate': 0.07, 'max_depth': 4, 'min_child_samples': 44, 'min_child_weight': 0.001}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 110, 'learning_rate': 0.07, 'max_depth': 4, 'min_child_samples': 44, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 110, 'learning_rate': 0.07, 'max_depth': 4, 'min_child_samples': 44, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 110, 'learning_rate': 0.07, 'max_depth': 4, 'min_child_samples': 44, 'min_child_weight': 0.001, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 161, 'learning_rate': 0.107, 'max_depth': 3, 'min_child_samples': 40, 'min_child_weight': 0.01}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 161, 'learning_rate': 0.107, 'max_depth': 3, 'min_child_samples': 40, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 161, 'learning_rate': 0.107, 'max_depth': 3, 'min_child_samples': 40, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 161, 'learning_rate': 0.107, 'max_depth': 3, 'min_child_samples': 40, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 99, 'learning_rate': 0.106, 'max_depth': 2, 'min_child_samples': 20, 'min_child_weight': 0.005}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 99, 'learning_rate': 0.106, 'max_depth': 2, 'min_child_samples': 20, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 99, 'learning_rate': 0.106, 'max_depth': 2, 'min_child_samples': 20, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 99, 'learning_rate': 0.106, 'max_depth': 2, 'min_child_samples': 20, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 73, 'learning_rate': 0.122, 'max_depth': 4, 'min_child_samples': 25, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 73, 'learning_rate': 0.122, 'max_depth': 4, 'min_child_samples': 25, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 73, 'learning_rate': 0.122, 'max_depth': 4, 'min_child_samples': 25, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 73, 'learning_rate': 0.122, 'max_depth': 4, 'min_child_samples': 25, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 169, 'learning_rate': 0.123, 'max_depth': 3, 'min_child_samples': 22, 'min_child_weight': 0.002}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 169, 'learning_rate': 0.123, 'max_depth': 3, 'min_child_samples': 22, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 169, 'learning_rate': 0.123, 'max_depth': 3, 'min_child_samples': 22, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 169, 'learning_rate': 0.123, 'max_depth': 3, 'min_child_samples': 22, 'min_child_weight': 0.002, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 94, 'learning_rate': 0.138, 'max_depth': 0, 'min_child_samples': 43, 'min_child_weight': 0.01}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 94, 'learning_rate': 0.138, 'max_depth': 0, 'min_child_samples': 43, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 94, 'learning_rate': 0.138, 'max_depth': 0, 'min_child_samples': 43, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 94, 'learning_rate': 0.138, 'max_depth': 0, 'min_child_samples': 43, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 75, 'learning_rate': 0.092, 'max_depth': -1, 'min_child_samples': 26, 'min_child_weight': 0.009}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.092, 'max_depth': -1, 'min_child_samples': 26, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.092, 'max_depth': -1, 'min_child_samples': 26, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 75, 'learning_rate': 0.092, 'max_depth': -1, 'min_child_samples': 26, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 152, 'learning_rate': 0.051, 'max_depth': 1, 'min_child_samples': 36, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 152, 'learning_rate': 0.051, 'max_depth': 1, 'min_child_samples': 36, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 152, 'learning_rate': 0.051, 'max_depth': 1, 'min_child_samples': 36, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 152, 'learning_rate': 0.051, 'max_depth': 1, 'min_child_samples': 36, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 173, 'learning_rate': 0.108, 'max_depth': 0, 'min_child_samples': 35, 'min_child_weight': 0.009}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 173, 'learning_rate': 0.108, 'max_depth': 0, 'min_child_samples': 35, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 173, 'learning_rate': 0.108, 'max_depth': 0, 'min_child_samples': 35, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 173, 'learning_rate': 0.108, 'max_depth': 0, 'min_child_samples': 35, 'min_child_weight': 0.009, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 69, 'learning_rate': 0.13, 'max_depth': 1, 'min_child_samples': 30, 'min_child_weight': 0.007}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 69, 'learning_rate': 0.13, 'max_depth': 1, 'min_child_samples': 30, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 69, 'learning_rate': 0.13, 'max_depth': 1, 'min_child_samples': 30, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 69, 'learning_rate': 0.13, 'max_depth': 1, 'min_child_samples': 30, 'min_child_weight': 0.007, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 157, 'learning_rate': 0.127, 'max_depth': 3, 'min_child_samples': 36, 'min_child_weight': 0.005}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 157, 'learning_rate': 0.127, 'max_depth': 3, 'min_child_samples': 36, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 157, 'learning_rate': 0.127, 'max_depth': 3, 'min_child_samples': 36, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 157, 'learning_rate': 0.127, 'max_depth': 3, 'min_child_samples': 36, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 157, 'learning_rate': 0.128, 'max_depth': 0, 'min_child_samples': 46, 'min_child_weight': 0.006}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 157, 'learning_rate': 0.128, 'max_depth': 0, 'min_child_samples': 46, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 157, 'learning_rate': 0.128, 'max_depth': 0, 'min_child_samples': 46, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 157, 'learning_rate': 0.128, 'max_depth': 0, 'min_child_samples': 46, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 96, 'learning_rate': 0.068, 'max_depth': 0, 'min_child_samples': 20, 'min_child_weight': 0.008}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 96, 'learning_rate': 0.068, 'max_depth': 0, 'min_child_samples': 20, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 96, 'learning_rate': 0.068, 'max_depth': 0, 'min_child_samples': 20, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 96, 'learning_rate': 0.068, 'max_depth': 0, 'min_child_samples': 20, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 35, 'learning_rate': 0.134, 'max_depth': 0, 'min_child_samples': 20, 'min_child_weight': 0.01}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.134, 'max_depth': 0, 'min_child_samples': 20, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.134, 'max_depth': 0, 'min_child_samples': 20, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 35, 'learning_rate': 0.134, 'max_depth': 0, 'min_child_samples': 20, 'min_child_weight': 0.01, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 76, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 25, 'min_child_weight': 0.004}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 76, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 25, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 76, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 25, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 76, 'learning_rate': 0.11, 'max_depth': 3, 'min_child_samples': 25, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 18, 'learning_rate': 0.059, 'max_depth': 0, 'min_child_samples': 34, 'min_child_weight': 0.004}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 18, 'learning_rate': 0.059, 'max_depth': 0, 'min_child_samples': 34, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 18, 'learning_rate': 0.059, 'max_depth': 0, 'min_child_samples': 34, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 18, 'learning_rate': 0.059, 'max_depth': 0, 'min_child_samples': 34, 'min_child_weight': 0.004, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 96, 'learning_rate': 0.134, 'max_depth': 3, 'min_child_samples': 26, 'min_child_weight': 0.008}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 96, 'learning_rate': 0.134, 'max_depth': 3, 'min_child_samples': 26, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 96, 'learning_rate': 0.134, 'max_depth': 3, 'min_child_samples': 26, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 96, 'learning_rate': 0.134, 'max_depth': 3, 'min_child_samples': 26, 'min_child_weight': 0.008, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO ALL params: {'n_estimators': 15, 'learning_rate': 0.072, 'max_depth': 4, 'min_child_samples': 49, 'min_child_weight': 0.006}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.072, 'max_depth': 4, 'min_child_samples': 49, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.072, 'max_depth': 4, 'min_child_samples': 49, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 15, 'learning_rate': 0.072, 'max_depth': 4, 'min_child_samples': 49, 'min_child_weight': 0.006, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv search graph...

INFO Drawing params_search_chart...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 182, 'learning_rate': 0.114, 'max_depth': 0, 'min_child_samples': 28, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.00013 secs

INFO [FIT_TRANSFORM] ['Age']: 6.8e-05 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 9.6e-05 secs

INFO [FIT_TRANSFORM] ['CNT_FAM_MEMBERS']: 9.4e-05 secs

INFO [FIT_TRANSFORM] ['CODE_GENDER']: 0.018857 secs

INFO [FIT_TRANSFORM] ['DAYS_BIRTH']: 0.000148 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 6.3e-05 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_CAR']: 0.019563 secs

INFO [FIT_TRANSFORM] ['FLAG_OWN_REALTY']: 0.019964 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.000742 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 9.7e-05 secs

INFO [FIT_TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.018716 secs

INFO [FIT_TRANSFORM] ['NAME_FAMILY_STATUS']: 0.019679 secs

INFO [FIT_TRANSFORM] ['NAME_HOUSING_TYPE']: 0.019325 secs

INFO [FIT_TRANSFORM] ['NAME_INCOME_TYPE']: 0.018796 secs

INFO [FIT_TRANSFORM] ['OCCUPATION_TYPE']: 0.018859 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000153 secs

INFO [TRANSFORM] ['Age']: 0.000195 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 7.1e-05 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000105 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.011863 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 0.000324 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.000137 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.011442 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.012064 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.001206 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 7e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.012357 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.012143 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.012047 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.012201 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.013462 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000125 secs

INFO [TRANSFORM] ['Age']: 9.3e-05 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000128 secs

INFO [TRANSFORM] ['CNT_FAM_MEMBERS']: 0.000567 secs

INFO [TRANSFORM] ['CODE_GENDER']: 0.005051 secs

INFO [TRANSFORM] ['DAYS_BIRTH']: 8.1e-05 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 6e-05 secs

INFO [TRANSFORM] ['FLAG_OWN_CAR']: 0.00529 secs

INFO [TRANSFORM] ['FLAG_OWN_REALTY']: 0.005147 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000622 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 6.9e-05 secs

INFO [TRANSFORM] ['NAME_EDUCATION_TYPE']: 0.00562 secs

INFO [TRANSFORM] ['NAME_FAMILY_STATUS']: 0.005723 secs

INFO [TRANSFORM] ['NAME_HOUSING_TYPE']: 0.005449 secs

INFO [TRANSFORM] ['NAME_INCOME_TYPE']: 0.007839 secs

INFO [TRANSFORM] ['OCCUPATION_TYPE']: 0.006574 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 11.14 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 182, 'learning_rate': 0.114, 'max_depth': 0, 'min_child_samples': 28, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 182, 'learning_rate': 0.114, 'max_depth': 0, 'min_child_samples': 28, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_estimators': 182, 'learning_rate': 0.114, 'max_depth': 0, 'min_child_samples': 28, 'min_child_weight': 0.005, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': [4, 7, 8, 11, 12, 13, 14, 15]}

INFO Using variables: 16...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 196.28 s

INFO Total: 196.33 s

In [32]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/v14-knn/v14-knn.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    # 指定使用训练的class并不进行打分转化

    model_type_path="sklearn.neighbors.KNeighborsClassifier",

    convert_score=False,

    customized_parameter={

        "n_neighbors": [3, 4, 5, 6, 7, 8],

        "weights": ['uniform', 'distance'],

        "leaf_size": [20, 30, 40, 50],

    },

    model_search_method="tpe",

    model_search_params={"binary": ["max", -1]},

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting nan_mode to min !

WARNING Pre: WOE_ not found, change pre to "" !

WARNING Find that model_search_method not in (order, order-random), setting auto_search_loop to 1 !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/v14-knn/Data_v14-knn.xlsx exists !

INFO Selecting by corr...

INFO Total: 10...

INFO Selected: 7...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 7...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 7...

INFO Selected: 6...

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'DAYS_EMPLOYED', 'FLAG_PHONE', 'FLAG_WORK_PHONE'] !

INFO Auto params cv...

INFO Auto search loop: 1...

  0%|          | 0/36 [00:00<?, ?trial/s, best loss=?]
INFO build_posterior_wrapper took 0.001021 seconds

INFO TPE using 0 trials

INFO ALL params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 41}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 41, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 41, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 41, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

  3%|▎         | 1/36 [00:01<00:57,  1.65s/trial, best loss: -0.9808088067603966]
INFO build_posterior_wrapper took 0.001112 seconds

INFO TPE using 1/1 trials with best loss -0.980809

INFO ALL params: {'n_neighbors': 6, 'weights': 'uniform', 'leaf_size': 27}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'uniform', 'leaf_size': 27, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'uniform', 'leaf_size': 27, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'uniform', 'leaf_size': 27, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

  6%|▌         | 2/36 [00:03<00:56,  1.66s/trial, best loss: -0.9808088067603966]
INFO build_posterior_wrapper took 0.000963 seconds

INFO TPE using 2/2 trials with best loss -0.980809

INFO ALL params: {'n_neighbors': 8, 'weights': 'uniform', 'leaf_size': 25}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'uniform', 'leaf_size': 25, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'uniform', 'leaf_size': 25, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'uniform', 'leaf_size': 25, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

  8%|▊         | 3/36 [00:04<00:54,  1.65s/trial, best loss: -0.9808088067603966]
INFO build_posterior_wrapper took 0.000978 seconds

INFO TPE using 3/3 trials with best loss -0.980809

INFO ALL params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 41}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 41, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 41, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 41, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 11%|█         | 4/36 [00:06<00:51,  1.61s/trial, best loss: -0.9808088067603966]
INFO build_posterior_wrapper took 0.000888 seconds

INFO TPE using 4/4 trials with best loss -0.980809

INFO ALL params: {'n_neighbors': 4, 'weights': 'distance', 'leaf_size': 45}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'distance', 'leaf_size': 45, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'distance', 'leaf_size': 45, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'distance', 'leaf_size': 45, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 14%|█▍        | 5/36 [00:08<00:49,  1.59s/trial, best loss: -0.9808088067603966]
INFO build_posterior_wrapper took 0.001111 seconds

INFO TPE using 5/5 trials with best loss -0.980809

INFO ALL params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 36}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 36, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 36, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 36, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 17%|█▋        | 6/36 [00:09<00:48,  1.61s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000959 seconds

INFO TPE using 6/6 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 6, 'weights': 'uniform', 'leaf_size': 47}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'uniform', 'leaf_size': 47, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'uniform', 'leaf_size': 47, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'uniform', 'leaf_size': 47, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 19%|█▉        | 7/36 [00:11<00:46,  1.61s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000849 seconds

INFO TPE using 7/7 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 27}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 27, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 27, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 27, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 22%|██▏       | 8/36 [00:12<00:44,  1.58s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000889 seconds

INFO TPE using 8/8 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 7, 'weights': 'uniform', 'leaf_size': 43}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'uniform', 'leaf_size': 43, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'uniform', 'leaf_size': 43, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'uniform', 'leaf_size': 43, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 25%|██▌       | 9/36 [00:14<00:43,  1.62s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000835 seconds

INFO TPE using 9/9 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 42}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 42, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 42, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 42, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 28%|██▊       | 10/36 [00:16<00:41,  1.61s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000824 seconds

INFO TPE using 10/10 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 3, 'weights': 'distance', 'leaf_size': 48}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 3, 'weights': 'distance', 'leaf_size': 48, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 3, 'weights': 'distance', 'leaf_size': 48, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 3, 'weights': 'distance', 'leaf_size': 48, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 31%|███       | 11/36 [00:17<00:39,  1.58s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000819 seconds

INFO TPE using 11/11 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 46}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 46, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 46, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 46, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 33%|███▎      | 12/36 [00:19<00:37,  1.58s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000808 seconds

INFO TPE using 12/12 trials with best loss -0.987939

INFO build_posterior_wrapper took 0.000771 seconds

INFO TPE using 13/13 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 22}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 22, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 22, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 22, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 39%|███▉      | 14/36 [00:20<00:27,  1.23s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000815 seconds

INFO TPE using 14/14 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 7, 'weights': 'uniform', 'leaf_size': 33}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'uniform', 'leaf_size': 33, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'uniform', 'leaf_size': 33, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'uniform', 'leaf_size': 33, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 42%|████▏     | 15/36 [00:22<00:27,  1.33s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.001153 seconds

INFO TPE using 15/15 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 36}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 36, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 36, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 5, 'weights': 'distance', 'leaf_size': 36, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 44%|████▍     | 16/36 [00:23<00:27,  1.37s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000867 seconds

INFO TPE using 16/16 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 8, 'weights': 'uniform', 'leaf_size': 24}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'uniform', 'leaf_size': 24, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'uniform', 'leaf_size': 24, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'uniform', 'leaf_size': 24, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 47%|████▋     | 17/36 [00:25<00:26,  1.39s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000796 seconds

INFO TPE using 17/17 trials with best loss -0.987939

INFO build_posterior_wrapper took 0.000712 seconds

INFO TPE using 18/18 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 3, 'weights': 'distance', 'leaf_size': 20}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 3, 'weights': 'distance', 'leaf_size': 20, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 3, 'weights': 'distance', 'leaf_size': 20, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 3, 'weights': 'distance', 'leaf_size': 20, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 53%|█████▎    | 19/36 [00:26<00:19,  1.13s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000874 seconds

INFO TPE using 19/19 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 22}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 22, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 22, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 4, 'weights': 'uniform', 'leaf_size': 22, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 56%|█████▌    | 20/36 [00:28<00:19,  1.22s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000820 seconds

INFO TPE using 20/20 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 37}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 37, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 37, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 37, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 58%|█████▊    | 21/36 [00:30<00:20,  1.34s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000792 seconds

INFO TPE using 21/21 trials with best loss -0.987939

INFO build_posterior_wrapper took 0.000828 seconds

INFO TPE using 22/22 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 38}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 38, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 38, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 38, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 64%|██████▍   | 23/36 [00:31<00:14,  1.11s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000803 seconds

INFO TPE using 23/23 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 31}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 31, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 31, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 31, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 67%|██████▋   | 24/36 [00:33<00:14,  1.24s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000819 seconds

INFO TPE using 24/24 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 32}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 32, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 32, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 32, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 69%|██████▉   | 25/36 [00:34<00:14,  1.30s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000808 seconds

INFO TPE using 25/25 trials with best loss -0.987939

INFO build_posterior_wrapper took 0.000688 seconds

INFO TPE using 26/26 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 30}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 30, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 30, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 30, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 75%|███████▌  | 27/36 [00:36<00:10,  1.11s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000820 seconds

INFO TPE using 27/27 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 50}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 50, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 50, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 50, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 78%|███████▊  | 28/36 [00:38<00:09,  1.22s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000838 seconds

INFO TPE using 28/28 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 39}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 39, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 39, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 39, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 81%|████████  | 29/36 [00:39<00:09,  1.34s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000778 seconds

INFO TPE using 29/29 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 39}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 39, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 39, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 39, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 83%|████████▎ | 30/36 [00:41<00:08,  1.41s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000807 seconds

INFO TPE using 30/30 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 35}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 35, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 35, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 35, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 86%|████████▌ | 31/36 [00:43<00:07,  1.46s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.001044 seconds

INFO TPE using 31/31 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 40}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 40, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 40, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 40, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 89%|████████▉ | 32/36 [00:44<00:06,  1.53s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000848 seconds

INFO TPE using 32/32 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 44}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 44, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 44, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 6, 'weights': 'distance', 'leaf_size': 44, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 92%|█████████▏| 33/36 [00:46<00:04,  1.55s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000833 seconds

INFO TPE using 33/33 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 28}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 28, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 28, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 7, 'weights': 'distance', 'leaf_size': 28, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 94%|█████████▍| 34/36 [00:48<00:03,  1.59s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.000864 seconds

INFO TPE using 34/34 trials with best loss -0.987939

INFO ALL params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 41}...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 41, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 41, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'n_neighbors': 8, 'weights': 'distance', 'leaf_size': 41, 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

 97%|█████████▋| 35/36 [00:49<00:01,  1.59s/trial, best loss: -0.9879391514987147]
INFO build_posterior_wrapper took 0.002857 seconds

INFO TPE using 35/35 trials with best loss -0.987939

100%|██████████| 36/36 [00:49<00:00,  1.38s/trial, best loss: -0.9879391514987147]
INFO Drawing cv search graph...

INFO Drawing params_search_chart...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'leaf_size': 36, 'n_neighbors': 8, 'weights': 'distance', 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.001133 secs

INFO [FIT_TRANSFORM] ['Age']: 0.000281 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 0.000213 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 0.000251 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 0.000283 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 0.000245 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000303 secs

INFO [TRANSFORM] ['Age']: 0.001819 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000626 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.00062 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.00053 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000165 secs


INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000265 secs

INFO [TRANSFORM] ['Age']: 0.001023 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000141 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.000131 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 0.000137 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 0.000135 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 9.77 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'leaf_size': 36, 'n_neighbors': 8, 'weights': 'distance', 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'leaf_size': 36, 'n_neighbors': 8, 'weights': 'distance', 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

INFO Using model params: {'leaf_size': 36, 'n_neighbors': 8, 'weights': 'distance', 'n_jobs': 2}

INFO Using variables: 6...

INFO Training KNeighborsClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

ERROR The JPMML-SkLearn conversion application has failed. The Java executable should have printed more information about the failure into its standard output and/or standard error streams

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

Standard output is empty

Standard error:

Apr 12, 2022 4:34:52 PM org.jpmml.sklearn.Main run

INFO: Parsing PKL..

Apr 12, 2022 4:34:52 PM org.jpmml.sklearn.Main run

SEVERE: Failed to parse PKL

net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for sklearn.metrics._dist_metrics.newObj). This happens when an unsupported/unregistered class is being unpickled that requires construction arguments. Fix it by registering a custom IObjectConstructor for this class.

	at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)

	at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:759)

	at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:199)

	at org.jpmml.python.PickleUtil$1.dispatch(PickleUtil.java:83)

	at net.razorvine.pickle.Unpickler.load(Unpickler.java:109)

	at org.jpmml.python.PickleUtil.unpickle(PickleUtil.java:104)

	at org.jpmml.sklearn.Main.run(Main.java:155)

	at org.jpmml.sklearn.Main.main(Main.java:143)



Exception in thread "main" net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for sklearn.metrics._dist_metrics.newObj). This happens when an unsupported/unregistered class is being unpickled that requires construction arguments. Fix it by registering a custom IObjectConstructor for this class.

	at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)

	at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:759)

	at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:199)

	at org.jpmml.python.PickleUtil$1.dispatch(PickleUtil.java:83)

	at net.razorvine.pickle.Unpickler.load(Unpickler.java:109)

	at org.jpmml.python.PickleUtil.unpickle(PickleUtil.java:104)

	at org.jpmml.sklearn.Main.run(Main.java:155)

	at org.jpmml.sklearn.Main.main(Main.java:143)



INFO Total: 64.64 s

INFO Total: 64.69 s

In [33]:
df_train, df_test = df_train.copy(), df_test.copy()

df_train["Age-swap"], df_test["Age-swap"] = df_train["Age"].copy(), df_test["Age"].copy()

df_train["sample1"] = np.random.rand(df_train.index.size)

df_train["sample2"] = np.random.uniform(0, 1, df_train.index.size)

df_test["sample1"] = np.random.rand(df_test.index.size)

df_test["sample2"] = np.random.uniform(0, 1, df_test.index.size)

at.Analysis.model_on_data(

    df_train, "./模型分析demo/v15/v15.xlsx", test_data=df_test,

    data_flow={

        **data_params, **{

            "save_or_return": False,  # 跳过csv的io读写提升性能

            "add_info": ["ID", "sample1", "sample2", "Age-swap"],  # model_flow才能读到

        },

    },

    model_flow={

        "split_col_name": "birth_year", "use_train_time": True,

        "exclude_column": ["ID", "weight"],  # 排除权重

        "swap_compare_name": ["sample1", "sample2", "Age-swap"],  # 直接伪造数据假设有三列需要swap

    }

)

INFO Prepare kwargs...

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting format_time_edge to True !

INFO Prepare run...

INFO Run: CNT_FAM_MEMBERS

INFO Run: OCCUPATION_TYPE

INFO Run: FLAG_PHONE

INFO Run: AMT_INCOME_TOTAL

INFO Run: NAME_HOUSING_TYPE

INFO Run: Age

INFO Run: DAYS_BIRTH

INFO Run: DAYS_EMPLOYED

INFO Run: NAME_INCOME_TYPE

INFO Run: FLAG_WORK_PHONE

INFO Run: FLAG_OWN_REALTY

INFO Run: CODE_GENDER

INFO Run: FLAG_MOBIL

INFO Run: CNT_CHILDREN

INFO Run: FLAG_EMAIL

INFO Run: NAME_EDUCATION_TYPE

INFO Run: FLAG_OWN_CAR

INFO Run: NAME_FAMILY_STATUS

INFO Selecting...

INFO Match train: FLAG_PHONE_asC

INFO Match train: OCCUPATION_TYPE_asD

INFO Match train: CNT_FAM_MEMBERS_asC

INFO Match train: NAME_HOUSING_TYPE_asD

INFO Match train: FLAG_OWN_REALTY_asD

INFO Match train: NAME_INCOME_TYPE_asD

INFO Match train: FLAG_WORK_PHONE_asC

INFO Match train: AMT_INCOME_TOTAL_asC

INFO Match train: CODE_GENDER_asD

INFO Match train: DAYS_EMPLOYED_asC

INFO Match train: CNT_CHILDREN_asC

INFO Match train: Age_asC

INFO Match train: FLAG_EMAIL_asC

INFO Match train: FLAG_OWN_CAR_asD

INFO Match train: NAME_EDUCATION_TYPE_asD

INFO Match train: DAYS_BIRTH_asC

INFO Match train: NAME_FAMILY_STATUS_asD

INFO Creating train data...

INFO Creating train corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating train cross table...

INFO Creating train all desc tables...

INFO Match test: CNT_FAM_MEMBERS_asC

INFO Match test: OCCUPATION_TYPE_asD

INFO Match test: FLAG_PHONE_asC

INFO Match test: AMT_INCOME_TOTAL_asC

INFO Match test: NAME_HOUSING_TYPE_asD

INFO Match test: Age_asC

INFO Match test: DAYS_BIRTH_asC

INFO Match test: DAYS_EMPLOYED_asC

INFO Match test: NAME_INCOME_TYPE_asD

INFO Match test: FLAG_WORK_PHONE_asC

INFO Match test: FLAG_OWN_REALTY_asD

INFO Match test: CODE_GENDER_asD

INFO Match test: CNT_CHILDREN_asC

INFO Match test: FLAG_EMAIL_asC

INFO Match test: NAME_EDUCATION_TYPE_asD

INFO Match test: FLAG_OWN_CAR_asD

INFO Match test: NAME_FAMILY_STATUS_asD

INFO Creating test data...

INFO Creating test corr detail...

INFO Creating (-inf, 1972-01-01] corr...

INFO Creating (1972-01-01, 1984-01-01] corr...

INFO Creating (1984-01-01, inf) corr...

INFO Creating all corr...

INFO Creating test cross table...

INFO Creating test all desc tables...

INFO Match train test: FLAG_OWN_REALTY_asD

INFO Match train test: NAME_FAMILY_STATUS_asD

INFO Match train test: DAYS_EMPLOYED_asC

INFO Match train test: NAME_INCOME_TYPE_asD

INFO Match train test: NAME_EDUCATION_TYPE_asD

INFO Match train test: NAME_HOUSING_TYPE_asD

INFO Match train test: AMT_INCOME_TOTAL_asC

INFO Match train test: FLAG_WORK_PHONE_asC

INFO Match train test: CODE_GENDER_asD

INFO Match train test: FLAG_OWN_CAR_asD

INFO Match train test: OCCUPATION_TYPE_asD

INFO Match train test: FLAG_PHONE_asC

INFO Match train test: Age_asC

INFO Match train test: DAYS_BIRTH_asC

INFO Match train test: CNT_CHILDREN_asC

INFO Match train test: FLAG_EMAIL_asC

INFO Match train test: CNT_FAM_MEMBERS_asC

INFO Saving info...

INFO Saving desc...

INFO Saving cross...

INFO Saving unique...

INFO Saving summary...

INFO Saving corr summary...

INFO Saving stable_summary...

INFO Saving train_stable_iv_ks...

INFO Saving train_stable_psi...

INFO Saving train_stable_quantile...

INFO Saving test_stable_iv_ks...

INFO Saving test_stable_psi...

INFO Saving test_stable_quantile...

INFO Saving stable_cross_psi...

INFO Saving detail...

INFO Saving draft...

INFO Saving drop...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 9.93 s

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

WARNING exclude_column: "weight" not in data !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting nan_mode to min !

WARNING Find that convert_score is True, setting precision to 0 !

INFO Model linear flow...

WARNING Find that convert_score is True & save_score_pmml is True, setting save_model_pmml to False !

INFO Selecting by corr...

INFO Total: 17...

INFO Selected: 15...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'max_depth': 3, 'n_estimators': 30, 'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 15...

INFO Training LGBMClassifier...

INFO Filtering importance by LGBMClassifier ...

INFO Total: 15...

INFO Selected: 15...

INFO Round: 1; Forward Stepwise: WOE_FLAG_OWN_REALTY_asD; Selected: 2

INFO Round: 1; Forward Stepwise: WOE_NAME_FAMILY_STATUS_asD; Selected: 3

INFO Round: 1; Forward Stepwise: WOE_DAYS_EMPLOYED_asC; Selected: 4

INFO Round: 1; Forward Stepwise: WOE_NAME_INCOME_TYPE_asD; Selected: 4

INFO Round: 1; Forward Stepwise: WOE_NAME_HOUSING_TYPE_asD; Selected: 5

INFO Round: 1; Forward Stepwise: WOE_NAME_EDUCATION_TYPE_asD; Selected: 6

INFO Round: 1; Forward Stepwise: WOE_CODE_GENDER_asD; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_OCCUPATION_TYPE_asD; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_AMT_INCOME_TOTAL_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_WORK_PHONE_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_OWN_CAR_asD; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_PHONE_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_DAYS_BIRTH_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_CNT_CHILDREN_asC; Selected: 7

INFO Round: 1; Forward Stepwise: WOE_FLAG_EMAIL_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_NAME_INCOME_TYPE_asD; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_OCCUPATION_TYPE_asD; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_AMT_INCOME_TOTAL_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_WORK_PHONE_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_OWN_CAR_asD; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_PHONE_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_DAYS_BIRTH_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_CNT_CHILDREN_asC; Selected: 7

INFO Round: 2; Forward Stepwise: WOE_FLAG_EMAIL_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_NAME_INCOME_TYPE_asD; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_OCCUPATION_TYPE_asD; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_AMT_INCOME_TOTAL_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_WORK_PHONE_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_OWN_CAR_asD; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_PHONE_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_DAYS_BIRTH_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_CNT_CHILDREN_asC; Selected: 7

INFO Round: 3; Forward Stepwise: WOE_FLAG_EMAIL_asC; Selected: 7

INFO Model variables: ['Intercept', 'WOE_FLAG_OWN_REALTY_asD', 'WOE_NAME_FAMILY_STATUS_asD', 'WOE_DAYS_EMPLOYED_asC', 'WOE_NAME_HOUSING_TYPE_asD', 'WOE_NAME_EDUCATION_TYPE_asD', 'WOE_CODE_GENDER_asD'] !

INFO Building model...

INFO Saving var_desc...

INFO Saving var_cross...

INFO Saving var_unique...

INFO Saving var_summary...

INFO Saving woe_corr...

INFO Saving train_stable_summary...

INFO Saving test_stable_summary...

INFO Saving train_var_stable_iv_ks...

INFO Saving train_var_stable_psi...

INFO Saving train_var_stable_quantile...

INFO Saving test_var_stable_iv_ks...

INFO Saving test_var_stable_psi...

INFO Saving test_var_stable_quantile...

INFO Saving var_stable_cross_psi...

INFO Saving var_detail...

INFO Saving var_draft...

Optimization terminated successfully.

         Current function value: 0.091927

         Iterations 8

INFO Saving var_drop...

INFO Prepare scorecard...

INFO Adding scorecard_description to excel...

INFO Converting train proba to score...

INFO Converting woe to score...

INFO Checking scorecard equation...

INFO Saving train_var_corr...

INFO Saving train vif...

INFO Getting detail score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Converting test proba to score...

INFO Converting woe to score...

INFO Checking scorecard equation...

INFO Saving test_var_corr...

INFO Saving test vif...

INFO Getting detail score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Getting swap compare...

INFO Getting swap 1...

INFO Drawing train swap scatter...

INFO Getting train swap count...

INFO Drawing test swap scatter...

INFO Getting test swap count...

INFO Getting swap psi...

INFO Getting swap 2...

INFO Drawing train swap scatter...

INFO Getting train swap count...

INFO Drawing test swap scatter...

INFO Getting test swap count...

INFO Getting swap psi...

INFO Getting swap 3...

INFO Drawing train swap scatter...

INFO Getting train swap count...

INFO Drawing test swap scatter...

INFO Getting test swap count...

INFO Getting swap psi...

INFO Saving model score gap...

INFO Creating pmml...

INFO Adding score_pmml to excel...

INFO Adding run_score_pmml_in_java to excel...

INFO Creating sql...

INFO Creating check unique sql...

INFO Creating unique table sql...

INFO Creating count sql...

INFO Adding model_sql to excel...

INFO Adding run_sql_in_dataframe to excel...

INFO birth_year | 3 | cv flow...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Prepare scorecard...

INFO Converting train proba to score...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Converting test proba to score...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 23.61 s

INFO Total: 33.64 s

In [34]:
df_train, df_test = df_train.copy(), df_test.copy()

df_train["sample1"] = np.random.rand(df_train.index.size)

df_train["sample2"] = np.random.uniform(0, 1, df_train.index.size)

df_test["sample1"] = np.random.rand(df_test.index.size)

df_test["sample2"] = np.random.uniform(0, 1, df_test.index.size)

at.Analysis.model_flow(

    df_train, "./模型分析demo/v16/v16.xlsx", test_data=df_test,

    # 目标定义 & 切片定义

    response="target", split_col_name="birth_year", use_train_time=True,

    exclude_column=["ID", "weight"],  # 排除权重

    add_info="ID",  # 主键添加

    exists_proba_name="Age",  # 假设此处Age是需要进行评估的模型结果

    swap_compare_name=["sample1", "sample2"],  # 直接伪造数据假设这两个维度需要swap

)

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting nan_mode to min !

WARNING Find that exists_proba_name is int, setting convert_score to False, setting precision to 0 !

WARNING Find that convert_score is False, setting keep_raw_score to False !

WARNING Find that convert_score is False, setting save_score_desc to False !

WARNING Find that convert_score is False, setting save_score_pmml to False !

INFO Model optional flow...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Getting swap compare...

INFO Getting swap 1...

INFO Drawing train swap scatter...

INFO Getting train swap count...

INFO Drawing test swap scatter...

INFO Getting test swap count...

INFO Getting swap psi...

INFO Getting swap 2...

INFO Drawing train swap scatter...

INFO Getting train swap count...

INFO Drawing test swap scatter...

INFO Getting test swap count...

INFO Getting swap psi...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 15.00 s

INFO Total: 15.05 s

In [35]:
df_train.drop(["sample1", "sample2", "Age-swap"], axis=1, inplace=True)

df_test.drop(["sample1", "sample2", "Age-swap"], axis=1, inplace=True)

In [36]:
at.Analysis.model_flow(

    df_train, "./模型分析demo/vr-torch/vr-torch.xlsx", test_data=df_test,

    recover_from_json="./模型分析demo/v8-torch/Model_v8-torch.json"

)

WARNING /home/conda_env/模型分析demo/v8-torch/Model_v8-torch_model.pkl not exists, setting recover_from_pkl to False !

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Find that filter_variable is False, setting zero_imp_filter to False !

WARNING Find that filter_variable is False, setting enable_stepwise to False !

WARNING Find that filter_variable is False, setting enable_corr_filter to False !

WARNING Find that filter_variable is False, setting limit_var_num to inf !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/vr-torch/Data_vr-torch.xlsx exists !

INFO Model variables: ['CNT_CHILDREN', 'AMT_INCOME_TOTAL', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'FLAG_MOBIL', 'FLAG_WORK_PHONE', 'FLAG_PHONE', 'FLAG_EMAIL', 'CNT_FAM_MEMBERS', 'Age'] !

  epoch    train_loss    valid_acc    valid_loss     dur

-------  ------------  -----------  ------------  ------

      1        0.4989       0.9810        0.4973  0.2592

      2        0.4972       0.9810        0.4973  0.3054

      3        0.4972       0.9810        0.4973  0.2572

      4        0.4972       0.9810        0.4973  0.2506

      5        0.4972       0.9810        0.4973  0.2443

      6        0.4972       0.9810        0.4973  0.2531

      7        0.4972       0.9810        0.4973  0.2538

      8        0.4972       0.9810        0.4973  0.2563

      9        0.4972       0.9810        0.4973  0.2560

     10        0.4972       0.9810        0.4973  0.2589

INFO Saving train results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 12.65 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

  epoch    train_loss    valid_acc    valid_loss     dur

-------  ------------  -----------  ------------  ------

      1        0.4992       0.9817        0.4970  0.1657

      2        0.4970       0.9817        0.4970  0.1685

      3        0.4970       0.9817        0.4970  0.1672

      4        0.4970       0.9817        0.4970  0.1691

      5        0.4970       0.9817        0.4970  0.1616

      6        0.4970       0.9817        0.4970  0.1653

      7        0.4970       0.9817        0.4970  0.1598

      8        0.4970       0.9817        0.4970  0.1670

      9        0.4970       0.9817        0.4970  0.1644

     10        0.4970       0.9817        0.4970  0.1693

INFO Saving train results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

  epoch    train_loss    valid_acc    valid_loss     dur

-------  ------------  -----------  ------------  ------

      1        0.5000       0.9802        0.4977  0.1647

      2        0.4977       0.9802        0.4977  0.1658

      3        0.4977       0.9802        0.4977  0.1669

      4        0.4977       0.9802        0.4977  0.1750

      5        0.4977       0.9802        0.4977  0.1742

      6        0.4977       0.9802        0.4977  0.1668

      7        0.4977       0.9802        0.4977  0.1649

      8        0.4977       0.9802        0.4977  0.1798

      9        0.4977       0.9802        0.4977  0.1790

     10        0.4977       0.9802        0.4977  0.1672

INFO Saving train results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

  epoch    train_loss    valid_acc    valid_loss     dur

-------  ------------  -----------  ------------  ------

      1        0.4991       0.9819        0.4969  0.1718

      2        0.4970       0.9819        0.4969  0.1863

      3        0.4970       0.9819        0.4969  0.1714

      4        0.4970       0.9819        0.4969  0.1894

      5        0.4970       0.9819        0.4969  0.1676

      6        0.4970       0.9819        0.4969  0.1729

      7        0.4970       0.9819        0.4969  0.1940

      8        0.4970       0.9819        0.4969  0.1806

      9        0.4970       0.9819        0.4969  0.1756

     10        0.4970       0.9819        0.4969  0.2019

INFO Saving train results...

INFO Getting total score...

WARNING Find that auto_resize_score is True and np.corrcoef(target, proba)[0, 1] < 0, replace proba with 100 / (proba + 1) !

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

ERROR Can't pickle local object 'run_torch_net.<locals>.Classifier'

INFO Saving model pmml...

ERROR

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 22.27 s

INFO Total: 22.33 s

In [37]:
ori_name = "./模型分析demo/v4-lgb/v4-lgb.xlsx"

new_output = "./模型分析demo/vr-lgb/vr-lgb.xlsx"

at.Analysis.model_flow(

    df_train, new_output,

    test_data=[df_test, df_data], train_name="开发", test_names=["测试", "全量"],

    recover_path=ori_name,

    # 继承 v4 并进行参数搜索,映射到多个数据集

    customized_parameter={

        "n_estimators": [10, 20, 30, 40, 50],

        "learning_rate": [0.05, 0.08, 0.10]

    }

)

WARNING Overwriting: customized_parameter found, disable recover from pkl !

WARNING Overwriting found, setting recover_from_pkl to False !

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Unable to find discrete data, setting allow_discrete to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/vr-lgb/Data_vr-lgb-开发-测试.xlsx exists !

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'DAYS_EMPLOYED', 'FLAG_PHONE', 'FLAG_WORK_PHONE'] !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000191 secs

INFO [FIT_TRANSFORM] ['Age']: 9.8e-05 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 9.1e-05 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 0.000102 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 8.9e-05 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 6.9e-05 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000205 secs

INFO [TRANSFORM] ['Age']: 0.001095 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000233 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 8.5e-05 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 7.5e-05 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 8e-05 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000139 secs

INFO [TRANSFORM] ['Age']: 0.000129 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 5.8e-05 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 5.8e-05 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 5.8e-05 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 9.9e-05 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 10.67 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 17.50 s

WARNING Overwriting: customized_parameter found, disable recover from pkl !

WARNING Overwriting found, setting recover_from_pkl to False !

INFO Prepare kwargs...

WARNING Setting format_time_edge to True !

INFO Checking train_data...

INFO Checking response...

INFO Checking test_data...

INFO Checking response...

INFO Checking columns...

INFO Checking dtypes...

WARNING Setting allow_nan to True by lightgbm.sklearn !

WARNING Setting allow_discrete to True by lightgbm.sklearn !

WARNING Unable to find nan data, setting allow_nan to False !

WARNING Unable to find discrete data, setting allow_discrete to False !

INFO Model optional flow...

WARNING Check /home/conda_env/模型分析demo/vr-lgb/Data_vr-lgb-开发-全量.xlsx exists !

INFO Model variables: ['AMT_INCOME_TOTAL', 'Age', 'CNT_CHILDREN', 'DAYS_EMPLOYED', 'FLAG_PHONE', 'FLAG_WORK_PHONE'] !

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO [FIT_TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000144 secs

INFO [FIT_TRANSFORM] ['Age']: 7.1e-05 secs

INFO [FIT_TRANSFORM] ['CNT_CHILDREN']: 9e-05 secs

INFO [FIT_TRANSFORM] ['DAYS_EMPLOYED']: 8.3e-05 secs

INFO [FIT_TRANSFORM] ['FLAG_PHONE']: 6.2e-05 secs

INFO [FIT_TRANSFORM] ['FLAG_WORK_PHONE']: 6.5e-05 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000326 secs

INFO [TRANSFORM] ['Age']: 0.000171 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 0.000107 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 0.000104 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 8.7e-05 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 8e-05 secs

INFO [TRANSFORM] ['AMT_INCOME_TOTAL']: 0.000169 secs

INFO [TRANSFORM] ['Age']: 0.000185 secs

INFO [TRANSFORM] ['CNT_CHILDREN']: 6.9e-05 secs

INFO [TRANSFORM] ['DAYS_EMPLOYED']: 8.7e-05 secs

INFO [TRANSFORM] ['FLAG_PHONE']: 7.3e-05 secs

INFO [TRANSFORM] ['FLAG_WORK_PHONE']: 8.4e-05 secs

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing train_score_uncut_ks_graph...

INFO Drawing train_score_uncut_count_chart1...

INFO Drawing train_score_uncut_count_chart2...

INFO Drawing train_score_uncut_count_chart3...

INFO Drawing train_score_uncut_cap_chart1...

INFO Drawing train_score_uncut_cap_chart2...

INFO Drawing train_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing train_score_cut_ks_graph...

INFO Drawing train_score_cut_rate_chart...

INFO Drawing train_score_cut_count_chart1...

INFO Drawing train_score_cut_count_chart2...

INFO Drawing train_score_cut_count_chart3...

INFO Drawing train_score_cut_cap_chart1...

INFO Drawing train_score_cut_cap_chart2...

INFO Drawing train_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing train_score_qcut_ks_graph...

INFO Drawing train_score_qcut_rate_chart...

INFO Drawing train_score_qcut_count_chart1...

INFO Drawing train_score_qcut_count_chart2...

INFO Drawing train_score_qcut_count_chart3...

INFO Drawing train_score_qcut_cap_chart1...

INFO Drawing train_score_qcut_cap_chart2...

INFO Drawing train_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing train_classification_chart...

INFO Drawing train_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Drawing test_score_uncut_ks_graph...

INFO Drawing test_score_uncut_count_chart1...

INFO Drawing test_score_uncut_count_chart2...

INFO Drawing test_score_uncut_count_chart3...

INFO Drawing test_score_uncut_cap_chart1...

INFO Drawing test_score_uncut_cap_chart2...

INFO Drawing test_score_uncut_cap_chart3...

INFO Creating cut info...

INFO Drawing test_score_cut_ks_graph...

INFO Drawing test_score_cut_rate_chart...

INFO Drawing test_score_cut_count_chart1...

INFO Drawing test_score_cut_count_chart2...

INFO Drawing test_score_cut_count_chart3...

INFO Drawing test_score_cut_cap_chart1...

INFO Drawing test_score_cut_cap_chart2...

INFO Drawing test_score_cut_cap_chart3...

INFO Creating qcut info...

INFO Drawing test_score_qcut_ks_graph...

INFO Drawing test_score_qcut_rate_chart...

INFO Drawing test_score_qcut_count_chart1...

INFO Drawing test_score_qcut_count_chart2...

INFO Drawing test_score_qcut_count_chart3...

INFO Drawing test_score_qcut_cap_chart1...

INFO Drawing test_score_qcut_cap_chart2...

INFO Drawing test_score_qcut_cap_chart3...

INFO Creating precision recall fscore...

INFO Drawing test_classification_chart...

INFO Drawing test_classification_chart...

INFO Drawing roc...

INFO Creating results summary...

INFO Drawing ap...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Drawing cut_psi_chart...

INFO Drawing cut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Drawing qcut_psi_chart...

INFO Total: 11.39 s

INFO Saving var_drop...

INFO birth_year | 3 | cv flow...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

WARNING Found n_jobs not set, setting to 2 !

WARNING Setting model params: use_missing to True !

WARNING Setting model params: zero_as_missing to False !

INFO Using model params: {'n_jobs': 2, 'use_missing': True, 'zero_as_missing': False}

INFO Using fit params: {'sample_weight': None, 'feature_name': 'auto', 'categorical_feature': 'auto'}

INFO Using variables: 6...

INFO Training LGBMClassifier...

INFO Saving train results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Saving test results...

INFO Getting total score...

INFO Creating uncut info...

INFO Creating cut info...

INFO Creating qcut info...

INFO Creating precision recall fscore...

INFO Creating results summary...

INFO Calculating Equidistant-based psi...

INFO Calculating Equivalent-based psi...

INFO Saving cross validate...

INFO Drawing cv compare graph...

INFO Drawing cv_compare_ks_chart...

INFO Drawing cv_compare_auc_chart...

INFO Drawing cv_compare_ap_chart...

INFO Drawing cv_compare_logloss_chart...

INFO Drawing cv_compare_r2_chart...

INFO Drawing cv_compare_mse_chart...

INFO Drawing cv_compare_mdp_chart...

INFO Drawing cv_compare_psi_chart...

INFO Drawing cv_compare_mpg_chart...

INFO Saving model pkl...

INFO Saving model pmml...

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:941: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stdout = io.open(c2pread, 'rb', bufsize)

/home/conda_env/miniconda3/lib/python3.9/subprocess.py:946: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used

  self.stderr = io.open(errread, 'rb', bufsize)

INFO Adding model_pmml to excel...

INFO Adding run_model_pmml_in_java to excel...

INFO Saving json...

INFO Saving setting...

INFO Adding runtime to excel...

INFO Saving directory...

INFO Saving...

INFO Total: 18.41 s

INFO Total: 42.53 s

In [38]:
at.dt.Api.zip_dir_files("./模型分析demo/vr-lgb.zip", "./模型分析demo/vr-lgb")

INFO Saving ./模型分析demo/vr-lgb/Model_vr-lgb-开发-测试.xlsx...

INFO Saving ./模型分析demo/vr-lgb/Model_vr-lgb-开发-测试.json...

INFO Saving ./模型分析demo/vr-lgb/Model_vr-lgb-开发-测试_model.pkl...

INFO Saving ./模型分析demo/vr-lgb/Model_vr-lgb-开发-全量.json...

INFO Saving ./模型分析demo/vr-lgb/Model_vr-lgb-开发-全量_model.pkl...

INFO Saving ./模型分析demo/vr-lgb/Model_vr-lgb-开发-全量.xlsx...

In [39]:
help(at.Report.create_model_report)

Help on function in module alpha_tools:



create_model_report(new_excel_name, excel_path_list, excel_name_list, train_test_dir_cn=None)

    Usage:

    ---------

    create_model_report(

        "xxx.xlsx", [

            "file1.xlsx", "file2.xlsx", ...

        ], [

            "filename1", "filename2", ...

        ], ["train_display_name", "test_display_name"]

    )

    ---------



In [40]:
help(at.Report.create_model_report2)

Help on function in module alpha_tools:



create_model_report2(new_excel_name, output_name, train_name, test_names)

    Usage:

    ---------

    Example1:

    ---------

    create_model_report2(

        "xxx.xlsx", "report.xlsx", "train", ["test1", "test2", ...]

    )

    ---------

    Example2:

    ---------

    create_model_report2(

        "xxx.xlsx", {

            "name1": "report1.xlsx",

            "name2": "report2.xlsx",

            ...

        }, "train", ["test1", "test2", ...]

    )

    ---------



In [41]:
at.Report.create_model_report(

    "./模型分析demo/vm-模型对比/vm-模型对比.xlsx",

    [

        "./模型分析demo/v1-lgb/v1-lgb.xlsx", "./模型分析demo/v2-lr/v2-lr.xlsx",

        "./模型分析demo/v3-lgb/v3-lgb.xlsx", "./模型分析demo/v4-lgb/v4-lgb.xlsx",

        "./模型分析demo/v5-gls/v5-gls.xlsx", "./模型分析demo/v6-lgb/v6-lgb.xlsx",

        "./模型分析demo/v6-lgb-oh/v6-lgb-oh.xlsx", "./模型分析demo/v7-lgb/v7-lgb.xlsx",

        "./模型分析demo/v8-torch/v8-torch.xlsx", "./模型分析demo/v9-lgb/v9-lgb.xlsx",

        "./模型分析demo/v10-lgb/v10-lgb.xlsx", "./模型分析demo/v11-lgb/v11-lgb.xlsx",

        "./模型分析demo/v12-lgb/v12-lgb.xlsx", "./模型分析demo/v13-lgb/v13-lgb.xlsx",

        "./模型分析demo/v14-knn/v14-knn.xlsx",

    ], [

        "v1-lgb", "v2-lr", "v3-lgb", "v4-lgb", "v5-gls",

        "v6-lgb", "v6-lgb-oh", "v7-lgb", "v8-torch", "v9-lgb",

        "v10-lgb", "v11-lgb", "v12-lgb", "v13-lgb", "v14-knn",

    ]

)

INFO Loading ./模型分析demo/v1-lgb/Model_v1-lgb.xlsx...

INFO Loading ./模型分析demo/v2-lr/Model_v2-lr.xlsx...

INFO Loading ./模型分析demo/v3-lgb/Model_v3-lgb.xlsx...

INFO Loading ./模型分析demo/v4-lgb/Model_v4-lgb.xlsx...

INFO Loading ./模型分析demo/v5-gls/Model_v5-gls.xlsx...

INFO Loading ./模型分析demo/v6-lgb/Model_v6-lgb.xlsx...

INFO Loading ./模型分析demo/v6-lgb-oh/Model_v6-lgb-oh.xlsx...

INFO Loading ./模型分析demo/v7-lgb/Model_v7-lgb.xlsx...

INFO Loading ./模型分析demo/v8-torch/Model_v8-torch.xlsx...

INFO Loading ./模型分析demo/v9-lgb/Model_v9-lgb.xlsx...

INFO Loading ./模型分析demo/v10-lgb/Model_v10-lgb.xlsx...

INFO Loading ./模型分析demo/v11-lgb/Model_v11-lgb.xlsx...

INFO Loading ./模型分析demo/v12-lgb/Model_v12-lgb.xlsx...

INFO Loading ./模型分析demo/v13-lgb/Model_v13-lgb.xlsx...

INFO Loading ./模型分析demo/v14-knn/Model_v14-knn.xlsx...

INFO Creating books summary...

INFO Saving...

INFO Creating 模型评估-变量参数-v1-lgb...

INFO Creating 模型评估-变量参数-v2-lr...

INFO Creating 模型评估-变量参数-v3-lgb...

INFO Creating 模型评估-变量参数-v4-lgb...

INFO Creating 模型评估-变量参数-v5-gls...

INFO Creating 模型评估-变量参数-v6-lgb...

INFO Creating 模型评估-变量参数-v6-lgb-oh...

INFO Creating 模型评估-变量参数-v7-lgb...

INFO Creating 模型评估-变量参数-v8-torch...

INFO Creating 模型评估-变量参数-v9-lgb...

INFO Creating 模型评估-变量参数-v10-lgb...

INFO Creating 模型评估-变量参数-v11-lgb...

INFO Creating 模型评估-变量参数-v12-lgb...

INFO Creating 模型评估-变量参数-v13-lgb...

INFO Creating 模型评估-变量参数-v14-knn...

INFO Creating 变量评估-分析汇总-v5-gls...

INFO Creating 变量评估-分组详情-v5-gls...

INFO Creating 模型应用-分数分布-等量分组-开发-v1-lgb...

INFO Creating 模型应用-分数分布-等量分组-开发-v3-lgb...

INFO Creating 模型应用-分数分布-等量分组-开发-v4-lgb...

INFO Creating 模型应用-分数分布-等量分组-开发-v5-gls...

INFO Creating 模型应用-分数分布-等量分组-开发-v6-lgb...

INFO Creating 模型应用-分数分布-等量分组-开发-v6-lgb-oh...

INFO Creating 模型应用-分数分布-等量分组-开发-v7-lgb...

INFO Creating 模型应用-分数分布-等量分组-开发-v8-torch...

INFO Creating 模型应用-分数分布-等量分组-开发-v9-lgb...

INFO Creating 模型应用-分数分布-等量分组-开发-v10-lgb...

INFO Creating 模型应用-分数分布-等量分组-开发-v11-lgb...

INFO Creating 模型应用-分数分布-等量分组-开发-v12-lgb...

INFO Creating 模型应用-分数分布-等量分组-开发-v13-lgb...

INFO Creating 模型应用-分数分布-等量分组-开发-v14-knn...

INFO Creating 模型应用-分数分布-等量分组-验证-v1-lgb...

INFO Creating 模型应用-分数分布-等量分组-验证-v3-lgb...

INFO Creating 模型应用-分数分布-等量分组-验证-v4-lgb...

INFO Creating 模型应用-分数分布-等量分组-验证-v5-gls...

INFO Creating 模型应用-分数分布-等量分组-验证-v6-lgb...

INFO Creating 模型应用-分数分布-等量分组-验证-v6-lgb-oh...

INFO Creating 模型应用-分数分布-等量分组-验证-v7-lgb...

INFO Creating 模型应用-分数分布-等量分组-验证-v8-torch...

INFO Creating 模型应用-分数分布-等量分组-验证-v9-lgb...

INFO Creating 模型应用-分数分布-等量分组-验证-v10-lgb...

INFO Creating 模型应用-分数分布-等量分组-验证-v11-lgb...

INFO Creating 模型应用-分数分布-等量分组-验证-v12-lgb...

INFO Creating 模型应用-分数分布-等量分组-验证-v13-lgb...

INFO Creating 模型应用-分数分布-等量分组-验证-v14-knn...

INFO Creating 模型评估-排序稳定性-开发-v1-lgb...

INFO Creating 模型评估-排序稳定性-开发-v3-lgb...

INFO Creating 模型评估-排序稳定性-开发-v4-lgb...

INFO Creating 模型评估-排序稳定性-开发-v5-gls...

INFO Creating 模型评估-排序稳定性-开发-v6-lgb...

INFO Creating 模型评估-排序稳定性-开发-v6-lgb-oh...

INFO Creating 模型评估-排序稳定性-开发-v7-lgb...

INFO Creating 模型评估-排序稳定性-开发-v8-torch...

INFO Creating 模型评估-排序稳定性-开发-v9-lgb...

INFO Creating 模型评估-排序稳定性-开发-v10-lgb...

INFO Creating 模型评估-排序稳定性-开发-v11-lgb...

INFO Creating 模型评估-排序稳定性-开发-v12-lgb...

INFO Creating 模型评估-排序稳定性-开发-v13-lgb...

INFO Creating 模型评估-排序稳定性-开发-v14-knn...

INFO Creating 模型评估-排序稳定性-验证-v1-lgb...

INFO Creating 模型评估-排序稳定性-验证-v3-lgb...

INFO Creating 模型评估-排序稳定性-验证-v4-lgb...

INFO Creating 模型评估-排序稳定性-验证-v5-gls...

INFO Creating 模型评估-排序稳定性-验证-v6-lgb...

INFO Creating 模型评估-排序稳定性-验证-v6-lgb-oh...

INFO Creating 模型评估-排序稳定性-验证-v7-lgb...

INFO Creating 模型评估-排序稳定性-验证-v8-torch...

INFO Creating 模型评估-排序稳定性-验证-v9-lgb...

INFO Creating 模型评估-排序稳定性-验证-v10-lgb...

INFO Creating 模型评估-排序稳定性-验证-v11-lgb...

INFO Creating 模型评估-排序稳定性-验证-v12-lgb...

INFO Creating 模型评估-排序稳定性-验证-v13-lgb...

INFO Creating 模型评估-排序稳定性-验证-v14-knn...

INFO Creating 模型评估-分布稳定性-开发-v1-lgb...

INFO Creating 模型评估-分布稳定性-开发-v3-lgb...

INFO Creating 模型评估-分布稳定性-开发-v4-lgb...

INFO Creating 模型评估-分布稳定性-开发-v5-gls...

INFO Creating 模型评估-分布稳定性-开发-v6-lgb...

INFO Creating 模型评估-分布稳定性-开发-v6-lgb-oh...

INFO Creating 模型评估-分布稳定性-开发-v7-lgb...

INFO Creating 模型评估-分布稳定性-开发-v8-torch...

INFO Creating 模型评估-分布稳定性-开发-v9-lgb...

INFO Creating 模型评估-分布稳定性-开发-v10-lgb...

INFO Creating 模型评估-分布稳定性-开发-v11-lgb...

INFO Creating 模型评估-分布稳定性-开发-v12-lgb...

INFO Creating 模型评估-分布稳定性-开发-v13-lgb...

INFO Creating 模型评估-分布稳定性-开发-v14-knn...

INFO Creating 模型评估-分布稳定性-验证-v1-lgb...

INFO Creating 模型评估-分布稳定性-验证-v3-lgb...

INFO Creating 模型评估-分布稳定性-验证-v4-lgb...

INFO Creating 模型评估-分布稳定性-验证-v5-gls...

INFO Creating 模型评估-分布稳定性-验证-v6-lgb...

INFO Creating 模型评估-分布稳定性-验证-v6-lgb-oh...

INFO Creating 模型评估-分布稳定性-验证-v7-lgb...

INFO Creating 模型评估-分布稳定性-验证-v8-torch...

INFO Creating 模型评估-分布稳定性-验证-v9-lgb...

INFO Creating 模型评估-分布稳定性-验证-v10-lgb...

INFO Creating 模型评估-分布稳定性-验证-v11-lgb...

INFO Creating 模型评估-分布稳定性-验证-v12-lgb...

INFO Creating 模型评估-分布稳定性-验证-v13-lgb...

INFO Creating 模型评估-分布稳定性-验证-v14-knn...

INFO Creating 模型评估-稳定性汇总-开发-v1-lgb...

INFO Creating 模型评估-稳定性汇总-开发-v3-lgb...

INFO Creating 模型评估-稳定性汇总-开发-v4-lgb...

INFO Creating 模型评估-稳定性汇总-开发-v5-gls...

INFO Creating 模型评估-稳定性汇总-开发-v6-lgb...

INFO Creating 模型评估-稳定性汇总-开发-v6-lgb-oh...

INFO Creating 模型评估-稳定性汇总-开发-v7-lgb...

INFO Creating 模型评估-稳定性汇总-开发-v8-torch...

INFO Creating 模型评估-稳定性汇总-开发-v9-lgb...

INFO Creating 模型评估-稳定性汇总-开发-v10-lgb...

INFO Creating 模型评估-稳定性汇总-开发-v11-lgb...

INFO Creating 模型评估-稳定性汇总-开发-v12-lgb...

INFO Creating 模型评估-稳定性汇总-开发-v13-lgb...

INFO Creating 模型评估-稳定性汇总-开发-v14-knn...

INFO Creating 模型评估-稳定性汇总-验证-v1-lgb...

INFO Creating 模型评估-稳定性汇总-验证-v3-lgb...

INFO Creating 模型评估-稳定性汇总-验证-v4-lgb...

INFO Creating 模型评估-稳定性汇总-验证-v5-gls...

INFO Creating 模型评估-稳定性汇总-验证-v6-lgb...

INFO Creating 模型评估-稳定性汇总-验证-v6-lgb-oh...

INFO Creating 模型评估-稳定性汇总-验证-v7-lgb...

INFO Creating 模型评估-稳定性汇总-验证-v8-torch...

INFO Creating 模型评估-稳定性汇总-验证-v9-lgb...

INFO Creating 模型评估-稳定性汇总-验证-v10-lgb...

INFO Creating 模型评估-稳定性汇总-验证-v11-lgb...

INFO Creating 模型评估-稳定性汇总-验证-v12-lgb...

INFO Creating 模型评估-稳定性汇总-验证-v13-lgb...

INFO Creating 模型评估-稳定性汇总-验证-v14-knn...

INFO Creating 模型评估-指标汇总-v1-lgb...

INFO Creating 模型评估-指标汇总-v2-lr...

INFO Creating 模型评估-指标汇总-v3-lgb...

INFO Creating 模型评估-指标汇总-v4-lgb...

INFO Creating 模型评估-指标汇总-v5-gls...

INFO Creating 模型评估-指标汇总-v6-lgb...

INFO Creating 模型评估-指标汇总-v6-lgb-oh...

INFO Creating 模型评估-指标汇总-v7-lgb...

INFO Creating 模型评估-指标汇总-v8-torch...

INFO Creating 模型评估-指标汇总-v9-lgb...

INFO Creating 模型评估-指标汇总-v10-lgb...

INFO Creating 模型评估-指标汇总-v11-lgb...

INFO Creating 模型评估-指标汇总-v12-lgb...

INFO Creating 模型评估-指标汇总-v13-lgb...

INFO Creating 模型评估-指标汇总-v14-knn...

INFO Creating 模型应用-分数PSI明细-v1-lgb...

INFO Creating 模型应用-分数PSI明细-v2-lr...

INFO Creating 模型应用-分数PSI明细-v3-lgb...

INFO Creating 模型应用-分数PSI明细-v4-lgb...

INFO Creating 模型应用-分数PSI明细-v5-gls...

INFO Creating 模型应用-分数PSI明细-v6-lgb...

INFO Creating 模型应用-分数PSI明细-v6-lgb-oh...

INFO Creating 模型应用-分数PSI明细-v7-lgb...

INFO Creating 模型应用-分数PSI明细-v8-torch...

INFO Creating 模型应用-分数PSI明细-v9-lgb...

INFO Creating 模型应用-分数PSI明细-v10-lgb...

INFO Creating 模型应用-分数PSI明细-v11-lgb...

INFO Creating 模型应用-分数PSI明细-v12-lgb...

INFO Creating 模型应用-分数PSI明细-v13-lgb...

INFO Creating 模型应用-分数PSI明细-v14-knn...

INFO Creating 模型应用-分数PSI汇总-v1-lgb...

INFO Creating 模型应用-分数PSI汇总-v2-lr...

INFO Creating 模型应用-分数PSI汇总-v3-lgb...

INFO Creating 模型应用-分数PSI汇总-v4-lgb...

INFO Creating 模型应用-分数PSI汇总-v5-gls...

INFO Creating 模型应用-分数PSI汇总-v6-lgb...

INFO Creating 模型应用-分数PSI汇总-v6-lgb-oh...

INFO Creating 模型应用-分数PSI汇总-v7-lgb...

INFO Creating 模型应用-分数PSI汇总-v8-torch...

INFO Creating 模型应用-分数PSI汇总-v9-lgb...

INFO Creating 模型应用-分数PSI汇总-v10-lgb...

INFO Creating 模型应用-分数PSI汇总-v11-lgb...

INFO Creating 模型应用-分数PSI汇总-v12-lgb...

INFO Creating 模型应用-分数PSI汇总-v13-lgb...

INFO Creating 模型应用-分数PSI汇总-v14-knn...

INFO Creating 模型评估-等量分组-KS图-开发-v1-lgb...

INFO Creating 模型评估-等量分组-KS图-开发-v3-lgb...

INFO Creating 模型评估-等量分组-KS图-开发-v4-lgb...

INFO Creating 模型评估-等量分组-KS图-开发-v5-gls...

INFO Creating 模型评估-等量分组-KS图-开发-v6-lgb...

INFO Creating 模型评估-等量分组-KS图-开发-v6-lgb-oh...

INFO Creating 模型评估-等量分组-KS图-开发-v7-lgb...

INFO Creating 模型评估-等量分组-KS图-开发-v8-torch...

INFO Creating 模型评估-等量分组-KS图-开发-v9-lgb...

INFO Creating 模型评估-等量分组-KS图-开发-v10-lgb...

INFO Creating 模型评估-等量分组-KS图-开发-v11-lgb...

INFO Creating 模型评估-等量分组-KS图-开发-v12-lgb...

INFO Creating 模型评估-等量分组-KS图-开发-v13-lgb...

INFO Creating 模型评估-等量分组-KS图-开发-v14-knn...

INFO Creating 模型评估-等量分组-KS图-验证-v1-lgb...

INFO Creating 模型评估-等量分组-KS图-验证-v3-lgb...

INFO Creating 模型评估-等量分组-KS图-验证-v4-lgb...

INFO Creating 模型评估-等量分组-KS图-验证-v5-gls...

INFO Creating 模型评估-等量分组-KS图-验证-v6-lgb...

INFO Creating 模型评估-等量分组-KS图-验证-v6-lgb-oh...

INFO Creating 模型评估-等量分组-KS图-验证-v7-lgb...

INFO Creating 模型评估-等量分组-KS图-验证-v8-torch...

INFO Creating 模型评估-等量分组-KS图-验证-v9-lgb...

INFO Creating 模型评估-等量分组-KS图-验证-v10-lgb...

INFO Creating 模型评估-等量分组-KS图-验证-v11-lgb...

INFO Creating 模型评估-等量分组-KS图-验证-v12-lgb...

INFO Creating 模型评估-等量分组-KS图-验证-v13-lgb...

INFO Creating 模型评估-等量分组-KS图-验证-v14-knn...

INFO Creating 模型评估-ROC曲线-开发-v1-lgb...

INFO Creating 模型评估-ROC曲线-开发-v3-lgb...

INFO Creating 模型评估-ROC曲线-开发-v4-lgb...

INFO Creating 模型评估-ROC曲线-开发-v5-gls...

INFO Creating 模型评估-ROC曲线-开发-v6-lgb...

INFO Creating 模型评估-ROC曲线-开发-v6-lgb-oh...

INFO Creating 模型评估-ROC曲线-开发-v7-lgb...

INFO Creating 模型评估-ROC曲线-开发-v8-torch...

INFO Creating 模型评估-ROC曲线-开发-v9-lgb...

INFO Creating 模型评估-ROC曲线-开发-v10-lgb...

INFO Creating 模型评估-ROC曲线-开发-v11-lgb...

INFO Creating 模型评估-ROC曲线-开发-v12-lgb...

INFO Creating 模型评估-ROC曲线-开发-v13-lgb...

INFO Creating 模型评估-ROC曲线-开发-v14-knn...

INFO Creating 模型评估-ROC曲线-验证-v1-lgb...

INFO Creating 模型评估-ROC曲线-验证-v3-lgb...

INFO Creating 模型评估-ROC曲线-验证-v4-lgb...

INFO Creating 模型评估-ROC曲线-验证-v5-gls...

INFO Creating 模型评估-ROC曲线-验证-v6-lgb...

INFO Creating 模型评估-ROC曲线-验证-v6-lgb-oh...

INFO Creating 模型评估-ROC曲线-验证-v7-lgb...

INFO Creating 模型评估-ROC曲线-验证-v8-torch...

INFO Creating 模型评估-ROC曲线-验证-v9-lgb...

INFO Creating 模型评估-ROC曲线-验证-v10-lgb...

INFO Creating 模型评估-ROC曲线-验证-v11-lgb...

INFO Creating 模型评估-ROC曲线-验证-v12-lgb...

INFO Creating 模型评估-ROC曲线-验证-v13-lgb...

INFO Creating 模型评估-ROC曲线-验证-v14-knn...

INFO Saving...

INFO Copy files...

INFO Copying /home/conda_env/模型分析demo/v1-lgb/Model_v1-lgb.xlsx...

INFO Copying /home/conda_env/模型分析demo/v2-lr/Model_v2-lr.xlsx...

INFO Copying /home/conda_env/模型分析demo/v3-lgb/Model_v3-lgb.xlsx...

INFO Copying /home/conda_env/模型分析demo/v4-lgb/Model_v4-lgb.xlsx...

INFO Copying /home/conda_env/模型分析demo/v5-gls/Data_v5-gls.xlsx...

INFO Copying /home/conda_env/模型分析demo/v5-gls/Model_v5-gls.xlsx...

INFO Copying /home/conda_env/模型分析demo/v6-lgb/Model_v6-lgb.xlsx...

INFO Copying /home/conda_env/模型分析demo/v6-lgb-oh/Data_v6-lgb-oh.xlsx...

INFO Copying /home/conda_env/模型分析demo/v6-lgb-oh/Model_v6-lgb-oh.xlsx...

INFO Copying /home/conda_env/模型分析demo/v7-lgb/Model_v7-lgb.xlsx...

INFO Copying /home/conda_env/模型分析demo/v8-torch/Model_v8-torch.xlsx...

INFO Copying /home/conda_env/模型分析demo/v9-lgb/Model_v9-lgb.xlsx...

INFO Copying /home/conda_env/模型分析demo/v10-lgb/Model_v10-lgb.xlsx...

INFO Copying /home/conda_env/模型分析demo/v11-lgb/Model_v11-lgb.xlsx...

INFO Copying /home/conda_env/模型分析demo/v12-lgb/Model_v12-lgb.xlsx...

INFO Copying /home/conda_env/模型分析demo/v13-lgb/Model_v13-lgb.xlsx...

INFO Copying /home/conda_env/模型分析demo/v14-knn/Model_v14-knn.xlsx...

INFO Creating csv path...

Out[41]:
(['./模型分析demo/v1-lgb/v1-lgb.xlsx',

  './模型分析demo/v2-lr/v2-lr.xlsx',

  './模型分析demo/v3-lgb/v3-lgb.xlsx',

  './模型分析demo/v4-lgb/v4-lgb.xlsx',

  './模型分析demo/v5-gls/v5-gls.xlsx',

  './模型分析demo/v6-lgb/v6-lgb.xlsx',

  './模型分析demo/v6-lgb-oh/v6-lgb-oh.xlsx',

  './模型分析demo/v7-lgb/v7-lgb.xlsx',

  './模型分析demo/v8-torch/v8-torch.xlsx',

  './模型分析demo/v9-lgb/v9-lgb.xlsx',

  './模型分析demo/v10-lgb/v10-lgb.xlsx',

  './模型分析demo/v11-lgb/v11-lgb.xlsx',

  './模型分析demo/v12-lgb/v12-lgb.xlsx',

  './模型分析demo/v13-lgb/v13-lgb.xlsx',

  './模型分析demo/v14-knn/v14-knn.xlsx'],

 ['v1-lgb',

  'v2-lr',

  'v3-lgb',

  'v4-lgb',

  'v5-gls',

  'v6-lgb',

  'v6-lgb-oh',

  'v7-lgb',

  'v8-torch',

  'v9-lgb',

  'v10-lgb',

  'v11-lgb',

  'v12-lgb',

  'v13-lgb',

  'v14-knn'],

 None,

 {})
In [ ]: